[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
89: 132人目の素数さん [] 2022/10/25(火) 19:55:26.79 ID:Hjv2Tos8 >>88 提案したところで時枝戦略によって勝率99/100で勝てるなら無意味 「はい、記事の通りです」と言ってるのと同じこと http://rio2016.5ch.net/test/read.cgi/math/1666352731/89
150: 132人目の素数さん [sage] 2022/10/27(木) 21:07:22.79 ID:Uf48OKA7 >>98,101 http://www.ma.huji.ac.il/hart/puzzle/choice.pdf Theorem 1 の証明の間違いの指摘、まだですか? http://rio2016.5ch.net/test/read.cgi/math/1666352731/150
399: 132人目の素数さん [sage] 2022/10/31(月) 22:46:36.79 ID:V6kL7bYX 定理:任意の A∈F_N と任意の k≧0 に対して、A^[k]∈F_N であり、 しかも μ_N(A^[k]) ≦ μ_N(A^[k+1]) (k≧0)である。 証明:A∈F_N に対して A^[k]∈F_N が成り立つことの証明は省略する。 次に、A∈F_N を任意に取る。μ_N(A^[k]) ≦ μ_N(A^[k+1]) (k≧0)を示したい。 一般に (A^[k])^[l]=A^[k+l] なので、μ_N(A) ≦ μ_N(A^[1]) が示せれば十分である。 まず、A ⊂ [0,1]A^[1] が成り立つ。また、A, [0,1]A^[1]∈F_N である。よって、 μ_N(A) ≦ μ_N([0,1]A^[1]) であり、そして μ_N([0,1]A^[1])=μ_N(A^[1]) である。 よって、μ_N(A) ≦ μ_N(A^[1]) である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/399
469: 132人目の素数さん [] 2022/11/01(火) 16:55:30.79 ID:25yibjh9 >>468 つづき 3) さて、そもそもの>>386で >>384-385より >>d:[0,1]^N → N は決定番号の写像であり、(d≦k) は非可測なので矛盾する。 > え、その証明はしないの? (引用終り) に戻る 確率空間の事象として、下記の Sergiu Hart氏 P2 Remark で、 Player 1 ”with probability 1 in game1”、”the xi independently and uniformly on [0, 1]”を採用しよう ”Ω = Π[n=1~∞]Ω_n = [0,1]×[0,1]×[0,1]×[0,1]×… (=[0,1]^N)”>>444 だったよね? Player 1の立場で、[0,1]→1(下記より。なお、Player 2の立場では[0,1]→0)となるよね 従って 下記類似設定では、”[1]×[1]×[1]×[1]×… (=[1]^N)”となるよね(Player 2の立場では、”[0]×[0]×[0]×[0]×… (=[0]^N)”) つまりは、”[1]×[1]×[1]×[1]×… (=[1]^N)”なるただ一つの元から d:[1]^N → N は決定番号の写像を作ることになる ここで、写像の値域Nが複数の値をとるならば、多価でしょ? この多価性をどうするの?w (くどいが、Player 2の立場では、”[0]×[0]×[0]×[0]×… (=[0]^N)”ですが) (参考) >>2 >>387 http://www.ma.huji.ac.il/hart/puzzle/choice.pdf Choice Games November 4, 2013 Sergiu Hart P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively. http://rio2016.5ch.net/test/read.cgi/math/1666352731/469
511: 132人目の素数さん [] 2022/11/02(水) 11:15:36.79 ID:i6iI4IYN >>509 >>>506 >>いま元々はヴィタリの非可測性の話で、 >>{0}は測度0と解せられる > {0}は測度0だが、{0}という言葉が測度0を指してる筈 > と言うなら日本語の文章読めてない 逆だろw あんたは、数学オチコボレ >>506より >>473 >>ヴィタリの非可測集合が、任意の実数ε>0について、[0,ε)の部分集合となるように取れることは理解していますか? >>にもかかわらず、ヴィタリの非可測集合は、 >>決して、{0}に出来ない理由を説明できますか? (引用終り) 1)コンテキスト(文脈)として、集合の可測非可測を論じていた 2)ヴィタリの非可測集合>>473は、元はR/Qの完全代表を区間[0,1]内にとったもの 区間[0,1]→任意の実数ε>0について、[0,ε)の部分集合となるように取れる>>473 3)”にもかかわらず、ヴィタリの非可測集合は、決して、{0}に出来ない理由を説明できますか?”>>473だよ さて、当たり前の話だが、もし この{0}を零集合(ルベーグ測度0の集合)の意味に解さなければ、問自身が無意味だ (例えば、[0,ε)の部分集合として、二つの有理数q1,q2∈Q からなる二点集合{q1,q2}(q1≠q2)を考える q1=0とすると、q1≠q2よりq2≠0で、二つの有理数q1,q2∈Q の二点集合{q1,q2}(q1≠q2)は、1点区間{0}に出来ない ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの有理数r1,r2∈R の2点集合でも全く同様)) 4)だから、当然{0}=零集合(ルベーグ測度0)(下記)と解するべきです そして、ヴィタリの非可測集合Vが、零集合(ルベーグ測度0)でないことは、>>473-474に示した (参考) https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論 完備性 可測集合 S が μ(S) = 0 であるとき零集合 (null set) という。測度 μ が完備 (complete) であるとは、零集合の全ての部分集合が可測であることである http://rio2016.5ch.net/test/read.cgi/math/1666352731/511
515: 132人目の素数さん [] 2022/11/02(水) 12:20:28.79 ID:i6iI4IYN >>489 追加 再録 http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 (愛媛大学 理学部) 2007 年数学基礎論サマースクール 静岡大学にて 2007 年 9 月 4 日~7 日 (引用終り) ここでP2より 引用開始 1.1 ボレル集合とその測度 Borel が提唱したボレル集合とその測度の定義は, ルベーグ測度の絶対性を論じる際に必要ですから, ここで 概略を述べます. まず n 次元ユークリッド空間 R n の部分集合 I で n 個の開区間の直積の形 I = (a1, b1) × (a2, b2) × ・ ・ ・ × (an, bn) になっているものを, 開矩形 (open rectangle) と呼びます. 矩形の測度は mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) によって定めるのが妥当でしょう. 有限個の矩形の和集合の測度も, 初等幾何でやるように, 交わりのない矩形 の和に分割することで計算できます. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/515
700: 132人目の素数さん [sage] 2022/11/05(土) 08:53:50.79 ID:b+W23d63 ということで http://rio2016.5ch.net/test/read.cgi/math/1666352731/700
734: 132人目の素数さん [sage] 2022/11/05(土) 15:20:31.79 ID:b+W23d63 >>732 せたぼん曰く >必死でヤクザみたいなレス付けているのは、殆どあなたですよ >自称数学科卒の落ちこぼれさん え?私、カタギですよ あと、レスは片手間ですね 素人相手にムキになる馬鹿はいませんや さすがに、大学1年の微積分と線型代数では落ちこぼれませんでしたね 無限乗積も正則行列も理解できましたから ハイ http://rio2016.5ch.net/test/read.cgi/math/1666352731/734
746: 132人目の素数さん [] 2022/11/05(土) 20:14:57.79 ID:3kC00iWj >>730 > つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく > 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ >一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) > だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 >両者(>>603と>>715と)は、数学的主張として別物ですよ 落ちこぼれ、”非可測”も十把一絡げ 細かく見ると、違いが分かるんだよ 1)ヴィタリ集合は、実数R上のルベーグ測度に対して、 選択公理を用いて、R/Qの完全代表系を利用することで、構成される>>512 2)「R^N自身にルベーグ測度が入らない」(会田茂樹 2007, 藤田博司)は、 そもそも「ボレル集合とその測度」>>515 において 測度を”開矩形 (open rectangle)” mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) で定義することに由来する いま簡単に、Li=bi - ai とおいて、全てのLiがLに等しいとすると mes(I) =L^n と書ける これで n→∞ とすると、mes(I) =L^∞ となる 明らかに、0<L<1なら0に潰れ 1<Lなら∞に発散する ここに、選択公理は関係ない つまり、ヴィタリ集合の非可測とは全く異なるのです 3)関数の可測性は、 関数の可測な像の逆像がまた可測になるというもの>>716 (非可測な関数は、これが保証されない。そうなるとルベーグ積分ができないのです。) (ルベーグ積分ができないと、測度論による確率計算をすることができないことに) 落ちこぼれさんは、 この3つの非可測の区別が 理解できないらしい http://rio2016.5ch.net/test/read.cgi/math/1666352731/746
804: 132人目の素数さん [] 2022/11/06(日) 14:11:32.79 ID:+0wVTm4U >>797 >選択函数をφとしてaを一つの同値類とする。 >「φが存在する」ということと >「φ(a)の値が入手できる」ということは別だと思う。 そこは誰も否定していないw >ある箱の中身まで当てるという箱入り無数目は後者を仮定している。 仮定していない もし仮定しているとしたら時枝証明のどこかに誤りがあるはずである。それはどこか? http://rio2016.5ch.net/test/read.cgi/math/1666352731/804
885: 132人目の素数さん [] 2022/11/06(日) 21:37:19.79 ID:aV+KEqav ところで有理数100個を出題する場合 別に完全にランダムに出すことにこだわらなければ 可測な分布が可能である そしてその場合、確率分布による計算でも 箱入り無数目の結論が導ける めんどくさいので確認しないが ヒマな人はやってごらん せたぼん ヒマだろ?w http://rio2016.5ch.net/test/read.cgi/math/1666352731/885
914: 132人目の素数さん [sage] 2022/11/07(月) 03:03:06.79 ID:e0OEzaz4 出題者が実数列 s∈[0,1]^N を選び、回答者が行動予定表 i∈I^N を選んだとき、 n回目までの時枝テストが終わった時点での回答者の勝利回数を S_n(s,i) と置く。そして、 A = { (s,i)∈Ω|liminf[n→∞] S_n(s,i) / n ≧ 99/100 } と置く。実は、A∈F_w かつ P_w(A) = 1 が成り立つことが言える。すなわち、 P_w.a.e.(s,i)∈Ω s.t. liminf[n→∞] S_n(s,i) / n ≧ 99/100 が成り立つ。これは、 ・ 出題者が実数列 s∈[0,1]^N をランダムに選び、 回答者が行動予定表 i∈I^N をランダムに選ぶとき、 確率 1 で liminf[n→∞] S_n(s,i) / n ≧ 99/100 が発生する という意味である。すなわち、時枝記事を別の表現方法で記述したものになっている。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/914
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.985s*