[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
554
: 2022/11/03(木)09:18
ID:8HW9bynv(2/22)
AA×
>>526
>>0
[
240
|320|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
554: [sage] 2022/11/03(木) 09:18:21.99 ID:8HW9bynv >>526 次に524 2)の反例 定理2 各項が1>a_n>0を満たすとき Π(n=1~∞)(1-a_n)>0 ⇔ Σ(n=1~∞)a_n<∞ 証明 級数が発散する場合は Π(n=1~N)(1-a_n) < exp(-Σ(n=1~N)a_n) であるから、部分積が0に収束することにより、無限乗積も0に「発散」する 級数が収束するときは、部分和が減少列であるから、下から押さえられることを示せばよい。 あるNが存在して a_n < 1/2, n ≧ N となる。このとき次が成り立つ。 1/(1 + 2 a_n)≦ 1 − a_n, n ≧ N 級数が収束することから 2?(n=1~N)a_n=?(n=1~N)2a_n も収束し したがって ∏(n = 1~∞)(1 + 2 a_n) も収束する。 ゆえに部分積には下限∏(n = 1~∞)1/(1 + 2 a_n)があり、 (0より大きな値に)収束する。 ま、上記の証明をトレースしなくても、例えば a_nがみな正で、Σ(n=1~∞)a_nが有限なら 1>exp(-a_n)だが、その無限乗積exp(-Σ(n=1~∞)a_n)は有限値 はい、二回死んだ!w 大学2年の微積分再履修も落第ね 🐎🦌 http://rio2016.5ch.net/test/read.cgi/math/1666352731/554
次に 2の反例 定理2 各項がを満たすとき 0 証明 級数が発散する場合は であるから部分積がに収束することにより無限乗積も0に発散する 級数が収束するときは部分和が減少列であるから下から押さえられることを示せばよい あるが存在して となるこのとき次が成り立つ 級数が収束することから も収束し したがって も収束する ゆえに部分積には下限 があり より大きな値に収束する ま上記の証明をトレースしなくても例えば がみな正でが有限なら だがその無限乗積は有限値 はい二回死んだ! 大学年の微積分再履修も落第ね
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 448 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.050s