[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
907(6): 2022/10/21(金)14:54 ID:/4AMHDZp(10/16) AAS
>>905
>必ず時枝戦略を採用すべしって制限はないのだから時枝戦略を採用しなければたいてい非可測にはならない
>元の問題は勝つ戦略はあるかなんだから
なるほど、君はそういう立場なのか。だったら、時枝記事の設定を少し変更してみても、君は文句を言うまい。
具体的には、次のように変更してみよう。
(1) 出題者は実数列 s∈[0,1]^N を一様分布に従ってランダムに選ぶ。
(2) 回答者は、i=(i_1,i_2,…)∈{1,2,…,100}^N を {1,2,…,100}^N 上の一様分布に従ってランダムに選ぶ。
省11
909(2): 2022/10/21(金)14:57 ID:ppRukeKx(9/15) AAS
>>907
その箱入り無数目改なら時枝戦略は99/100で勝てる
元の箱入り無数目は時枝戦略でほんとに勝てるかどうか不明な場合がある
910(1): 2022/10/21(金)15:11 ID:/4AMHDZp(12/16) AAS
>>909
>元の箱入り無数目は時枝戦略でほんとに勝てるかどうか不明な場合がある
それも微妙に見解が間違っている。もともとの時枝記事では
∀s∈[0,1]^N s.t. 出題者が毎回 s を出題するとき、回答者の勝率は 99/100 以上である
が示されている。これは正しい。一方で、君が言っているのは
「 s を一様分布に従ってランダムに出題したら回答不能だ(非可測な事象が出現して確率が計算できないので)」
省5
911(1): 2022/10/21(金)15:16 ID:3OMYDiSB(2/51) AAS
>>907-908
なんかめんどくさいな
単に同じ人が二回チャレンジしないといえばいいだけ
同じ問題を不特定多数の人が一回づつチャレンジする
その場合、当然100列のそれぞれを選ぶ人はほぼ同数になる
外れは1列しかありえないのだから、確率は99/100になる
そういうこと 証明を読めばそういう解釈で計算しているとわかる
省1
912: 2022/10/21(金)15:32 ID:/4AMHDZp(13/16) AAS
>>911
別にそれでもいいが、正式に確率空間として記述したときに、対応が分かりやすいような書き方をしたつもり。
あと、自分でも書いてて混乱してしまったが、>>907の設定では
「1回でも箱の中身の推測に成功していたら回答者の勝利」
が勝利条件なので、回答者が勝利する確率は「 1 」になる。つまり、
・ 確率 1 で「少なくとも1回は箱の中身の推測に成功する」
ということ。>>908の場合はどうかというと、これもまた、回答者が勝利する確率は「 1 」になる。つまり、
省4
914: 2022/10/21(金)16:14 ID:/4AMHDZp(14/16) AAS
>>913
>多少はケチがつかないとなんでも入れていい箱の中の実数が当たるのは不自然
箱の中身の実数が当たってしまうのは、選択公理が原因。バナッハ・タルスキーのパラドックスと構図は同じ。
1つの球が、それと同じ半径の2つの球に分解できるなんて、こんなに不自然なことはない。
しかし、そんな不自然なことが数学的に正しく証明されている。時枝記事も同じこと。時枝記事では
∀s∈[0,1]^N s.t. 出題者が毎回 s を出題するとき、回答者の勝率は 99/100 以上である
が示されている。これは数学的に正しいので、君はケチをつけられない。一方で、君が言っているのは
省6
920: 2022/10/21(金)17:21 ID:/4AMHDZp(16/16) AAS
>>919
推しも何も、時枝記事そのものは正しいのだから、文句のつけようがないでしょ。時枝記事では
∀s∈[0,1]^N s.t. 出題者が毎回 s を出題するとき、回答者の勝率は 99/100 以上である
が示されているに過ぎない。これは数学的に正しいので、君はケチをつけられない。
君が言うところの「出題をランダムにしたらどうなるか?」という疑問は、
時枝記事そのものに対する疑問ではなくて、
・ 時枝 "戦術" を利用した色々なバリエーションの中で、出題をランダムにしたケースではどうなるのか?
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s