[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
828
(2): 2022/10/18(火)23:54 ID:Ad52aa1a(1) AAS
>>822
>はい、誤りw
>例えば[0,1]の中の有理数全体の集合は可算集合だが
>上記の集合の各点のみの集合が同じ測度をもち、
>全体が1となるような測度は存在しないことが
>ヴィタリ集合の非可測性と全く同じ推論で証明できるw

お主の頭、腐っているなw
省13
829: 2022/10/19(水)06:50 ID:IlI3V106(1/2) AAS
>>828
>「一つの定数の(可算)無限和は 0 であるか無限大に発散する」だよ。
 中卒でもそのくらいのことはわかるんだな ほめてやるよ
>だから、上記で”全体が1となるような測度は存在しない”という結論は同じだが、
 「だから・・・同じ」 これで中卒エテ公は完全に死んだ
 「だが」はない、「だが」はな!
>”ヴィタリ集合の非可測性と全く同じ推論”ではないぞ
省3
831
(1): 2022/10/19(水)08:05 ID:xfu4AEGC(1/2) AAS
お主の頭、腐っているなw

まず、文字化け訂正>>828
外部リンク:ja.wikipedia.org
ヴィタリ集合
可測集合
集合には '長さ' や '重さ' が定まるものがある。例えば、区間 [0, 1]は長さ1を持つと思われる。; もっと一般的に、区間[a, b] (a <= b) は長さ b - a を持つと思われる。このような区間を一様な密度の金属棒と見ると、同じように重さも定義可能である。集合 [0, 1] ∪ [2, 3] は長さ1の二つの区間の合併であるので、この集合の全長は2と考える。重さで考えても同様に2と考えられる。ここで自然に次の問題が発生する: 実数直線の任意の部分集合 E に対して、必ず '重さ' や '全長'は得られるのか? 例えば、[0, 1] 上の有理数集合はどんな重さになるであろうか。有理数集合は実数直線の中で稠密なので、非負の値が適切であろう。重さに最も近い一般化はσ-加法性を持つルベーグ測度である。この測度は [a, b] の長さに b - a を割り当て、可算集合である有理数全体の集合には 0 を割り当てる。ルベーグ測度が定められる集合をルベーグ可測集合と呼ぶ。しかし、ルベーグ測度の構成(カラテオドリの拡張定理を使う)自体からは非可測集合の存在は明らかに分かることではない。その問題に対する答えは選択公理を仮定するかどうかをも問うことになる。
(引用終り)
省12
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s