[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
730(1): 2022/10/12(水)00:44 ID:TRiiI02m(5/14) AAS
ちなみに、スレ主は K[[x]] での極限を考えるのが好きらしいので、そのようなケースを考えてみよう。
まず、s,t ∈ K[[x]] が s〜t を満たさない場合を考察する。m≧0 に対して
t^{m} := Σ[k=0〜m−1] t_k x^k+(s_m+1)x^m+Σ[k=m+1〜∞] s_k x^k
と置けば、これは形式的ベキ級数であり、s 〜 t^{m} が成り立ち、(s, t^{m})に関するしっぽは「 m しっぽ 」である。
さて、t^{m} について、完備化されたK[[x]]の構造のもとで m→∞ の極限を考えると、
lim[m→∞] t^{m} = t が成り立つことが確認できる。一方で、
(1) (s, t^{m})に関するしっぽは「 m しっぽ 」
省6
734: 2022/10/12(水)01:02 ID:TRiiI02m(9/14) AAS
細かいことだが、添え字が若干ズレてたな。
>>728
× s=Σ[k=0〜∞] s_k x^k と表したとき、t = (s_m+1)x^m+Σ[k=m+1〜∞] s_k x^k と置けばよい。
〇 s=Σ[k=0〜∞] s_k x^k と表したとき、t = (s_{m−1}+1)x^{m−1}+Σ[k=m〜∞] s_k x^k と置けばよい。
>>730
× t^{m} := Σ[k=0〜m−1] t_k x^k+(s_m+1)x^m+Σ[k=m+1〜∞] s_k x^k
〇 t^{m} := Σ[k=0〜m−2] t_k x^k+(s_{m−1}+1)x^{m−1}+Σ[k=m〜∞] s_k x^k
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s