[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
639(6): 2022/10/10(月)02:11 ID:2LUt7npK(1/9) AAS
サイコロ2つのうち小さな目または同じ目をこの時点で当てれば勝ちです
サイコロを2つを1つずつそれぞれ別の壺に入れて振ります
どちらか片方をランダムに選びます
この時点では勝率は1/2以上
ランダムに選んだ壺を開けたら目は1でした
この時点で勝率は1/6になる
片方の壺を開けて目を知ってしまえばいくら壺をランダムに選んでいてもその目が出た条件付き確率になってしまう
省1
640: 2022/10/10(月)02:12 ID:2LUt7npK(2/9) AAS
>>639
1行目のこの時点では無視して
641: 2022/10/10(月)02:24 ID:2LUt7npK(3/9) AAS
>>639
小さな目または同じ目の方を開けずに残せば勝ちという意味です
642: 2022/10/10(月)07:19 ID:EBzEjr+/(1/7) AAS
>>639
>どちらか片方をランダムに選びます
>この時点では勝率は1/2以上
>ランダムに選んだ壺を開けたら目は1でした
>この時点で勝率は1/6になる
>片方の壺を開けて目を知ってしまえばいくら壺をランダムに選んでいてもその目が出た条件付き確率になってしまう
>時枝戦術も箱を開けてそれぞれの列の決定番号を知ってしまえば勝率は条件付き確率になってしまわないかな?
省21
643: 2022/10/10(月)08:14 ID:fMmIzuDH(1/5) AAS
>>639
conglomerableならば、条件付き確率の集積で正しい確率が求まる
しかし、箱入り無数目は、そうでない場合にあたる
99列の決定番号が分かっているとして100列目の決定番号を予測するのと
100列分かっていて、どの列を選ぶか予測するのとでは、値が違ってくる
「100列は定数」という前提は、条件つき確率の集積、を諦めている
この時点で問題は自明化してしまっているが、数学的には間違っていない
省3
644: 2022/10/10(月)10:21 ID:/bF8CLbh(5/39) AAS
>>639
時枝記事では、出題する実数列は固定なので、正しくは以下のようになる。
・ 100個の壺それぞれにサイコロを1個ずつ振って入れる。k番目のツボの中身を d_k とする。
・ これ以降は、毎回「 k番目のツボの中身を d_k 」に固定して試行を繰り返す(初期設定の固定)。
・ さて、回答者は 1,2,…,100 からランダムに番号 i を選び、「 i 番目のツボ 」を選択する。
・ d_i > max{ d_k|k≠i, 1≦k≦100 } が成り立つなら回答者の負け。それ以外なら回答者の勝ち。
省2
647(2): 2022/10/10(月)10:46 ID:KbysNzzt(2/18) AAS
>>639
>片方の壺を開けて目を知ってしまえばいくら壺をランダムに選んでいてもその目が出た条件付き確率になってしまう
どちらの壺の中身も知らない場合の勝率と、選ばなかった壺の中身が1であると知った後の勝率は別の勝率であるというだけのこと。
後者の勝率がどうであろうと、前者の勝率には何の影響も無い。別の勝率だからね。
>時枝戦術も箱を開けてそれぞれの列の決定番号を知ってしまえば勝率は条件付き確率になってしまわないかな?
箱入り無数目の場合、「決定番号は何等かの確率分布に従っている」という前提は無い。
そのためサイコロの場合と同じように論ずることはできないが、いずれにしろ問われているのは前者に相当する勝率であって、他の勝率がどうであろうと何の影響も無い。
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s