[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
494(4): 2022/09/29(木)22:39 ID:Vbe/WZxQ(6/6) AAS
>>493により、スレ主が言うところの
「基本は無限大」
は絶対に成り立たないことが分かる。
なんたって、(R[x], F, P) が確率空間になるような任意の確率空間で>>493が成立するからだ。
レーヴェンハイム・スコーレムの定理を使えば「基本は無限大」が示せると思ったら大間違い。
・ ちゃんと確率空間(R[x], F, P)を設定して丁寧に記述すれば、
「多項式 f(x) をランダムに選ぶと、確率1 で f(x) の次数は有限値である」
省2
496(3): 2022/09/30(金)10:17 ID:Zr93ztAB(1/2) AAS
>>490-495
だから、多項式環の多項式の次数の大小を使って
確率計算しようという時枝記事>>1の魂胆が、矛盾を起こしているってことでしょ?w
1)多項式環から、作為(有意)にn次多項式を取り出すことは可能
代数学ではこれ。ここは何の問題もない!w
2)では、多項式環から、無作為(ランダム)にn次多項式を取り出すことは可能か?
(そもそも、ランダム性の定義が問題だが、そこはいまはツッコミなしとして)
省9
497: 2022/09/30(金)10:37 ID:psVftveJ(1/14) AAS
>>496
>2)では、多項式環から、無作為(ランダム)にn次多項式を取り出すことは可能か?
> (そもそも、ランダム性の定義が問題だが、そこはいまはツッコミなしとして)
> ある人が、ランダムに取り出したらm次式になったとしよう
> しかし、多項式環は無限次元線形空間>>489だから、m次よりももっと大きな多項式であるべき
> m次の百億倍の次数の多項式を取り出したとする。それでも足りない・・・(繰り返し)
>3)そもそもが、多項式環の元の多項式の次数は、サンプリングしたら、その平均値ないし中央値は発散している
省6
544: 2022/10/02(日)15:45 ID:z7FJyPZM(13/20) AAS
>>531
> ・で、上記の多項式 f(x)=a0+a1x+・・+anx^n +・・ が登場したら? 時枝の記事の確率計算は成立しない!
これは>>493-494で反論済み。多項式f(x)を確率空間(R[x], F, P)においてランダムに選ぶと、
f(x)の次数は確率1で有限値である。しかも、このことは(R[x], F, P)が確率空間になるような任意のF,Pで成立する。
なので、スレ主が危惧するようなケースは、確率論的には絶対に起こらない。
スレ主はどうしても「基本は無限大」という立場に固執したいようだが、確率空間(R[x], F, P)の言葉できちんと記述すれば、
「確率1で有限値」(=基本は有限値)
省3
553: 2022/10/02(日)22:18 ID:z7FJyPZM(17/20) AAS
なお、>>493-494の繰り返しになるが、R[x]には標準的なランダム性が存在しないので、
R[x]からランダムにf(x)を選びたいなら、(R[x], F, P) が確率空間になるような
任意のσ集合体 F と、任意の確率測度 P を、任意に設定してから議論することになる。
では、そのような確率空間 (R[x], F, P) を任意に取る。
この確率空間に基づいて、R[x] から多項式をランダムに選ぶことにする。すると、
{ f(x)∈R[x]|deg(f(x))<+∞ } = R[x]
なので、両辺の確率が定義できて、しかも
省5
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s