[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1(18): 2022/08/13(土)16:51 ID:d42KNd2H(1/5) AAS
前スレが1000近くなったので、新スレを立てる
前スレ 箱入り無数目を語る部屋2
2chスレ:math
(参考)
時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋
純粋・応用数学(含むガロア理論)8
2chスレ:math
省18
91(6): 2022/08/27(土)18:52 ID:zyqPAIcH(6/7) AAS
>>88
>回答者のつもりでしたが、確かに回答者の存在を消しても
>「箱を開けなくても中身が代表系と一致する確率が99/100の箱が存在する」
>という形のステートメントは成立しますね。
>これは選択公理だけで成立しますね。
選択公理だけで成立しません
1)現代数学の一般論として、確率計算を成立させるためには、コルモゴロフの確率公理を必要とする 外部リンク:ja.wikipedia.org コルモゴロフの公理
省13
132(6): 2022/09/02(金)10:44 ID:ioFjspoh(1/2) AAS
>>129 追加
ほいよ
(参考)>>1より
時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋
純粋・応用数学(含むガロア理論)8
2chスレ:math
問題に戻り,閉じた箱を100列に並べる.
省12
209(4): 2022/09/11(日)08:37 ID:cFRF8/nb(2/3) AAS
>>208 つづき
1)前レスで、ランダムサンプリングができない非正則な分布>>51について説明した
この場合、できるのは作為によるサンプリング(有意抽出>>196)のみ
2)これを時枝記事>>1に見ると、人は自然に ”決定番号∈自然数N”だからと
直感的に100個の数 d1<d2<d3<・・・<d100 を思う(>>162)
そして、d1,d2,d3,・・・,d100から、作為でこれらに対応する代表元を思い浮かべる
が、これが作為だという自覚が無い人が大半だ(大学レベルの確率論や確率過程論を習得した人以外では)
省17
213(3): 2022/09/11(日)13:11 ID:cFRF8/nb(3/3) AAS
>>209 補足
よく知られているが
1)選択公理だけでは、確率計算はできない
一般論として、確率計算は測度論をベースとしたコルモゴロフの確率公理を必要とする>>91
2)同様の議論を、時枝氏自身が出している
「結果R^N →R^N/~ の切断は非可測になる.」と(下記)
3)また mathoverflow>>1で
省20
263(5): 2022/09/17(土)17:36 ID:2w4pRyyr(2/4) AAS
みなさん、ご苦労さまです
スレ主です
1.時枝記事>>1
の面白さ とは
・本来、一つ箱があって、それ以外にもいくつか箱がある
・話を簡単にするために、iid=独立同分布を仮定する
・問題の箱と他の箱とは、独立だから、他の箱を開けても、問題の箱の情報はもらえない
省6
323: 2022/09/18(日)21:13 ID:/maedeNP(12/19) AAS
>>315
>1.数学的帰納法により、>>304(つまりは>>289のSergiu Hart氏主張が)全ての自然数n∈Nで成り立つ
>2.時枝でも、数列 s = (s1,s2,s3 ,・・・)∈R^N >>304 と書かれている
数列 s = (s1,s2,s3 ,・・・)の項数は?
496(3): 2022/09/30(金)10:17 ID:Zr93ztAB(1/2) AAS
>>490-495
だから、多項式環の多項式の次数の大小を使って
確率計算しようという時枝記事>>1の魂胆が、矛盾を起こしているってことでしょ?w
1)多項式環から、作為(有意)にn次多項式を取り出すことは可能
代数学ではこれ。ここは何の問題もない!w
2)では、多項式環から、無作為(ランダム)にn次多項式を取り出すことは可能か?
(そもそも、ランダム性の定義が問題だが、そこはいまはツッコミなしとして)
省9
519(3): 2022/10/02(日)06:57 ID:7ceUIlDx(1/5) AAS
>>513 補足
1)結論としては、時枝氏の非正則分布>>51を使っていて、そこがアウトだってことだろう
2)非正則分布の代表例として、自然数N={0,1,2・・}を考える
3)時枝さんの記事>>1では、決定番号d1,d2,・・d100を使う。この最大値をDmaxとする
4)区間[0,Dmax]の自然数は、有限でしかない
5)自然数(可算無限)全体から見ると、区間[0,Dmax]は無限小と同じでほとんど0
(自然数(可算無限)全体を1としたらってこと。(無限の)全体を1とすることは、実際にはできないが。まあ 有限/無限=~0とでも考えて下さい)
省3
550(7): 2022/10/02(日)21:54 ID:7ceUIlDx(5/5) AAS
>>547 補足
整理しておこう
1)時枝記事の無限列
2chスレ:math >>1
時枝問題(数学セミナー201511月号の記事)
実数列の集合 R^Nを考える.
s = (s0,s1,s2,s3 ,・・・)∈R^N (都合でs0からスタートする)
省11
576(9): 2022/10/07(金)08:03 ID:JooN1fem(1/2) AAS
>>560 補足
>時枝記事が正しければ、
>無限のランダムウォーク中にひとつ
>ランダムウォークのしっぽ同値類を使って、確率99/100で的中できる
>というアホな話になるw
まあ、現代確率論、確率過程論で
時枝記事がデタラメということは、すぐ分かる
省33
584(3): 2022/10/07(金)23:04 ID:JooN1fem(2/2) AAS
>>576 補足
(引用開始)
5)時枝の記事>>1は、ある大きな次数(自然数)mを取れば、
m以上の項は、同値類でしっぽの共通部分に当たるから、
代表のτ+fd(x)を見れば、問題のτ+f(x) の共通のしっぽの部分も推察がつくというものだ>>1
6)時枝記事は、99個の列を作って、それらの決定番号の最大値 Dmax99 を得て
それを上記mとして利用しようというもの
省25
667(4): 2022/10/10(月)14:44 ID:EBzEjr+/(3/7) AAS
>>584
>>576 補足
(引用開始)
5)時枝の記事>>1は、ある大きな次数(自然数)mを取れば、
m以上の項は、同値類でしっぽの共通部分に当たるから、
代表のτ+fd(x)を見れば、問題のτ+f(x) の共通のしっぽの部分も推察がつくというものだ>>1
6)時枝記事は、99個の列を作って、それらの決定番号の最大値 Dmax99 を得て
省12
737: 2022/10/12(水)06:32 ID:d1b0AKbp(3/7) AAS
>>727-733
要するに>>1は極限が分かってない
中卒・高卒・文系卒・工学部卒等にありがちな症状
754(1): 2022/10/12(水)20:12 ID:d1b0AKbp(7/7) AAS
任意の無限列a1,a2,a3,・・・について、この無限列に収束する
0,0,0,・・・
a1,0,0,・・・
a1,a2,0,・・・
という無限列の無限列が構成できる
そして、上記の無限列の中のいかなる無限列も
0,0,0,・・・ と同値である
省8
805(4): 2022/10/17(月)07:28 ID:qQwmejim(3/4) AAS
まず
>>804 訂正
そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可算は出ない>>725
↓
そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可測は出ない>>725
さて
>>804 補足
省18
857(3): 2022/10/20(木)07:47 ID:0CBm2hkn(2/4) AAS
>>855
>箱の中には実数しか入れられない
時枝記事の箱の可算無限数列>>1を、形式的冪級数環の要素と見る立場で説明できる>>576
形式的冪級数環の係数は、複素数に拡張できる
従って、箱に複素数を入れても、全く同様の議論は可能ですw
869(6): 2022/10/20(木)18:05 ID:T5rDkYGh(1/2) AAS
>>857-858 補足
1)時枝氏の記事の原理は、>>1
可算無限の数列のしっぽの同値類で
問題の数列と、代表の数列との比較で、
ある(箱の)番号から、先のしっぽが一致する決定番号なるものを用いるもの
2)つまり、決定番号dが何らかの手段で分かれば
代表の数列は既知だから、
省27
872: 2022/10/20(木)18:43 ID:fszNwzQa(5/5) AAS
>>869
>そして、「d<d'の確率が1/2だ」と叫ぶw>>1
そんなことは一言も言っていない。
「d,d'のいずれかをランダムに選択した方をa、他方をa'としたとき、a≦a'の確率が1/2以上だ」と言っている
ランダム選択という手順が無ければ確率1/2は言えない。
馬鹿丸出し。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.050s