[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
804: 132人目の素数さん [] 2022/10/17(月) 07:15:48.43 ID:qQwmejim >>801 追加 alg-d 壱大整域 さんか、 下記なども面白いね http://alg-d.com/math/ac/ alg-d トップ > 数学 > 選択公理 TOP: 壱大整域 http://alg-d.com/math/ac/tsudoi4.pdf 第四回 関西すうがく徒のつどい「代数学における選択公理」 PDF版 2013 年 9 月 21 日 (抜粋) 1 Six Impossible Rings ZFC では存在できないとよく知られている環を 6 つ《構成》したという論文である. (正確に言えば,そのような環が存在する ZF のモデルを構成したということ.) 以下,環とは単位元を持つ可換環を指す. 定理. ZF では以下のような環が存在しうる. (1) 極大イデアルを持たない整域で,任意のイデアルが有限生成となるもの. (引用終り) ”(1) 極大イデアルを持たない整域で,任意のイデアルが有限生成となるもの.” か 有限小数環とか 多項式環も 似た感じかもね ”★お知らせ★ このページの内容が紙の本になりました。 Amazonのこちらのページで購入することができます” とかあるね そうそう 時枝記事では、完全代表系は、必ずしも必要ない 例えば、100個の代表が必要なら、最小限100個の代表ですむ 当然ですが、有限の代表で済ますなら、有限選択公理で済む 可算の代表で済ますならば、可算選択公理で済む そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可算は出ない>>725 ただし、全事象が発散するという非正則分布>>51には、なる http://rio2016.5ch.net/test/read.cgi/math/1660377072/804
805: 132人目の素数さん [] 2022/10/17(月) 07:28:46.65 ID:qQwmejim まず >>804 訂正 そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可算は出ない>>725 ↓ そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可測は出ない>>725 さて >>804 補足 >時枝記事では、完全代表系は、必ずしも必要ない >例えば、100個の代表が必要なら、最小限100個の代表ですむ >当然ですが、有限の代表で済ますなら、有限選択公理で済む >可算の代表で済ますならば、可算選択公理で済む >そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可測は出ない>>725 >ただし、全事象が発散するという非正則分布>>51には、なる だから、時枝氏の記事>>1の 「選択公理→非可測集合」という論が可笑しいよね ”ZFCでは、実数R中に、ヴィタリ集合的な非可測が出るから ZFC中の測度論は、非可測を使っている”みたいな時枝氏の論は ちょっとね。 非可測集合の存在と ZFC中での 非可測集合を排除した測度論の存在とは 両立するよね 時枝も同じ>>1 最小限100個の代表ですむんだったら 「ヴィタリ集合的な非可測は、関係ない」よね (実数R+ZFCだから、即ヴィタリ集合で、”お手つき”みたいな意味不明な議論はやめてほしいよ) http://rio2016.5ch.net/test/read.cgi/math/1660377072/805
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s