[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
735: 132人目の素数さん [] 2022/10/12(水) 06:21:38.07 ID:d1b0AKbp >>724 >意味わかんないけど 長さを定義しないから、意味がわかんないんだよ 尻尾の長さは始まりから終わりまでの項の数 終わりがなければ、当然無限 こんな簡単なことわかんないって人間失格だな、マジで http://rio2016.5ch.net/test/read.cgi/math/1660377072/735
739: 132人目の素数さん [] 2022/10/12(水) 07:21:15.46 ID:9R3xgkXT >>735 >>意味わかんないけど > 長さを定義しないから、意味がわかんないんだよ > 尻尾の長さは始まりから終わりまでの項の数 だから、そういう定義では、 コーシー列は収束しないだろ? 例えば、円周率π を、無限小数展開する π=3.141592・・・ 一方、これから有限小数列を作る π1=3,π2=3.1,π3=3,14,・・・ πn=3.141592・・ (小数第n-1位まで) |π-πn|を考えると、これはどんどん小さくなって、コーシー列としてπに収束する 項の数は、無限だろうが、 しっぽは、小さくなっていると思って良いんじゃね?w > 終わりがなければ、当然無限 それで済むなら、無限公理はいらんわな 「限りが無い」=「無限」だけれど そして、「いかなる有限よりも大きい」=無限大 だけれど 数理哲学的には、可能無限と実無限に分けられるよ (無限公理で、実無限ができる) 例えば ”多項式空間 K[x] や形式的冪級数の空間 K[[x]] は無限次元”>>601 柳田伸太郎 名古屋大より これで ”形式的冪級数の空間 K[[x]] と数列空間K^N は同じ線形空間と見なせる”>>601(実無限)だけれど 多項式空間 K[x] は、可能無限であって、数列空間K^N (= K[[x]] )の真部分集合でしかない http://rio2016.5ch.net/test/read.cgi/math/1660377072/739
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s