[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
629: 132人目の素数さん [] 2022/10/09(日) 21:24:33.27 ID:yhqNfXZG >>624 追加 >有限小数環⊂有理数環(循環節をもつ無限小数) ⊂実数(完備化されたもの) 下記 "0.999…"は、有限小数環の中では収束しない 収束先の”1”に、無限に近づくが、有限小数環の中で1=0.999… は、実現できない(可能無限の世界) しかし、有理数環(循環節をもつ無限小数)内では、1/3=0.333…が存在するので 両辺を3倍して、1=0.999… は、実現できる(実無限) ここらの機微が理解できない人、いるよねww https://ja.wikipedia.org/wiki/0.999... 0.999... 数学において"0.999…"は、小数点の後に無限に"9"が続く循環十進小数である。 概要 実数として "0.999…" と"1"は等しくなることを示すことができる(ただし、0.9999など途中で終了する小数は1と等しいと言えない)。この証明は、実数論の展開、背景にある仮定、歴史的文脈、対象となる聞き手などに合ったレベルで、各種段階の数学的厳密性が相応に考慮された、多様な定式化がある[注釈 1]。 超実数 超準解析によって、無限小(およびその逆数)の完全な系列を含んだ数体系が提供される[注釈 6]。 数 0.999… の標準的な定義は 0.9, 0.99, 0.999, … なる数列の極限であるが、それと異なる定義として例えばテレンス・タオが超極限 (ultralimit) と呼ぶ数列 0.9, 0.99, 0.999, … の超冪構成(英語版)に関する同値類 [(0.9, 0.99, 0.999, …)] は 1 より無限小だけ小さい。より一般に、階数 H の無限大超自然数の位置に最後の 9 がくる超実数 uH = 0.999…;…999000…, はより厳密な不等式 uH < 1 を満足する。 このように解釈した "0.999…" は 1 に「無限に近い」。イアン・スチュアートはこの解釈を、「0.999… は 1 よりも『ほんの少しだけ小さい』」という直観を厳密に正当化する「全く合理的な」方法として特徴づけた[24]。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/629
630: 132人目の素数さん [sage] 2022/10/09(日) 22:03:42.30 ID:F/TfSZrv >>629 ほらね。結局スレ主は>>581-583の問題に返答しない。 >ここらの機微が理解できない人、いるよねww その機微とやらを使えば、時枝記事が非正則分布を使っていることが示せるのか? だったら、全く同じ屁理屈によって、>>581-583でも非正則分布を使っていることになるよな? なんたって、>581-583では多項式環・形式的ベキ級数環をスレ主が提唱する形で記述してるんだからなw しかし、>581-583だと回答者の勝率は 99/100 以上である。ここがスレ主の限界。 スレ主がどんな補足をしようとも、その補足は>581-583にも通用してしまい、 スレ主は自動的に墓穴を掘る。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/630
632: 132人目の素数さん [] 2022/10/09(日) 23:45:55.17 ID:yhqNfXZG >>629 追加 可能無限の世界をもう少し掘り下げる 非正則分布>>51 全事象の積分なり和が発散して、「確率の和が1ではありません」>>51 <1/x の和ないし積分の"発散"について> 1)1/x の和ないし積分が"発散"することは、下記のyahoo知恵袋の通り有名な事項だ 2)1/x の積分で、1から10^10 までの積分を考えると、ln(10^10)=10*ln(10) このとき、1/x=1/(10^10) で、単位をメートルとすると、ほぼ水素の原子の半径 約0.1 x 10-9 m= 0.1 nm(ナノメートル)になる 3)しかし、x=10^10 から∞まで広義積分すると、やはり発散して無限大になる 下記のyahoo知恵袋のように、一つ一つは殆ど0なのに、和や広義積分は発散する 4)そして、そもそも、自然数なら、減衰する1/xでなく 一様なxの和(積分)を扱うので、当然の如く発散して非正則になる もし決定番号なら、一様どころか、増大している。そういうものの量を可能無限で扱って、確率計算すれば、当然矛盾が起きるのです!w (参考) https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13228126168 yahoo知恵袋 yah********さん 2020/7/9 10:26 広義積分1/x (1→∞)が発散するのは何故ですか? 1/xはxが∞で0に収束します。積分はグラフの面積と同じなので、面積が収束するなら広義積分も収束しそうです。広義積分のイメージがつかめないので、教えてください。 ベストアンサー fordさん 2020/7/9 10:29 イメージのお話をするならば、 Σ(x=1,∞) (1/x) が収束せずに発散する ことに近いです。一つ一つが0に収束しても、その合計は発散することがあります。 その他の回答(2件) ohm********さん 2020/7/9 14:49 S(R)=∫[1~R]dx/x=log(R) ゆえです。 ナイス! ひことさん 2020/7/9 11:17 あなたがどんなに大きい数Mを言っても、それに対して ∫[1→K] 1/x dx ≧ MとなるようなKを具体的に指定できる。 https://www2.kek.jp/imss/education/hydrogen/h-pedia/ 水素の原子の構造 電子を含む水素原子(H0)の半径は、約0.1 x 10-9 m= 0.1 nm(ナノメートル) ただし、ボーア(Bohr)の水素原子モデルでは、半径は0.053 x 10-9 m= 0.053 nm 。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/632
705: 132人目の素数さん [] 2022/10/10(月) 23:11:24.78 ID:EBzEjr+/ >>681 補足 もう既に書いたことだが 1)可算無限列 a0,a1,a2,・・an,・・を 形式的冪級数τ=a0+a1x+a2x^2+・・+anx^n+・・に写して考えることができる(>>601 柳田伸太郎 名大 ) 2)しっぽの同値類は、同じ同値類に属する形式的冪級数τ1,τ2で差を作ると f(x)=τ1-τ2 と多項式になる(等しいしっぽの項の部分が消える) 逆に、τ1=τ2+f(x)と書ける。つまり、同じ同値類に属する形式的冪級数は、τ2と多項式f(x) の和に書ける このことから、一つの同値類全体は、あるτ+K[x] と書ける(K[x] は多項式環>>601で、 "τ+K[x]"の+は、記号の濫用) 3)決定番号は、多項式f(x)の次数nのとき、n+1となる (つまり、n+1以降が共通のしっぽ部分になる) 4)形式的冪級数環の空間 K[[x]]>>601と多項式環K[x] との関係は 多項式環K[x]を完備化すると K[[x]]になると考えることができる >>624 >>486-487 (ちょうど、有限小数環を完備化すると、無限小数たる超越数等を含む実数の集合になるのと同じ)>>624>>629 5)多項式環K[x]の中で、コーシー列が形成できて、それが例えば超越関数τに収束する。が、τには到達しない(寸止め状態(皮一枚残り))>>681 それは、可能無限状態で、いくらでも超越関数τに近い多項式が作れるってこと 6)これを、同値類のしっぽの視点で考えると、 いくらでも しっぽを小さくできて、しっぽを無限小にできるということ(本来はこちら)>>681 7)だから、時枝記事のように、 同値類のしっぽが無限大の大きさであることを前提とした確率99/100の議論は、前提が間違っているってこと つまり、”時枝記事の「99/100以上」という勝率”が、根本から間違っているってこと http://rio2016.5ch.net/test/read.cgi/math/1660377072/705
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.046s