[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
519: 132人目の素数さん [] 2022/10/02(日) 06:57:28.21 ID:7ceUIlDx >>513 補足 1)結論としては、時枝氏の非正則分布>>51を使っていて、そこがアウトだってことだろう 2)非正則分布の代表例として、自然数N={0,1,2・・}を考える 3)時枝さんの記事>>1では、決定番号d1,d2,・・d100を使う。この最大値をDmaxとする 4)区間[0,Dmax]の自然数は、有限でしかない 5)自然数(可算無限)全体から見ると、区間[0,Dmax]は無限小と同じでほとんど0 (自然数(可算無限)全体を1としたらってこと。(無限の)全体を1とすることは、実際にはできないが。まあ 有限/無限=~0とでも考えて下さい) 6)有限部分を使って確率99/100を導いても、全体では(99/100)*0=0 (ここは、区間[0,Dmax]の自然数の正則な一様分布に取り直せばクリアできる。しかし、そうすると、時枝氏の記事が全体として成立しなくなる) QED http://rio2016.5ch.net/test/read.cgi/math/1660377072/519
126: 132人目の素数さん [] 2022/09/01(木) 20:26:39.40 ID:WU14z2o9 >>123 補足 関連部分を下記に再録する >>91より 現代数学の系譜11 ガロア理論を読む20 https://wc2014.5ch.net/test/read.cgi/math/1466279209/519-532 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13] >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 521 名前:132人目の素数さん[sage] 投稿日:2016/07/03(日) 22:36:32.49 ID:/kjhINs/ [10/15] >>519 記事のどこが疑問なのか明確にしてもらえますか? 説明不足でよく分からない 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13] 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/126
521: 132人目の素数さん [] 2022/10/02(日) 07:21:25.81 ID:fbgrG592 >>519 >5)自然数(可算無限)全体から見ると、区間[0,Dmax]は無限小と同じでほとんど0 ナンセンス 回答者のターンにおいては最初から決定番号はd1,d2,・・d100であることが定まっている つまり決定番号がd1,d2,・・d100である確率は1 よって >(99/100)*0=0 は間違いで、正しくは (99/100)*1=99/100 これが理解できないようじゃこのスレに来ても無駄だよ http://rio2016.5ch.net/test/read.cgi/math/1660377072/521
524: 132人目の素数さん [sage] 2022/10/02(日) 10:24:54.81 ID:z7FJyPZM >>519 これこそ、>>499の具体例(100枚の封筒)がそのまま通用する。 >499では、回答者の勝率は 99 / 100 以上だが、スレ主の屁理屈によれば、次のようになる。 ・ >499の100枚の封筒の中身を d1,d2,…,d100 とする。この最大値を Dmax とする。 ・ 区間[0,Dmax]の自然数は、有限でしかない ・ 自然数(可算無限)全体から見ると、区間[0,Dmax]は無限小と同じでほとんど0 ・ 有限部分を使って確率99/100を導いても、全体では(99/100)*0=0 ・ よって、>499の100枚の封筒では、回答者の実際の勝率はゼロである。 これがスレ主の言っていること。間違っている。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/524
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s