[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
195: 132人目の素数さん [] 2022/09/10(土) 07:38:38.87 ID:qj1cTL8E >>194 補足 ・2次式 f(x)=a+bx+cx^2 が、3次元ユークリッド空間 (a,b,c) [0,1]^3 の立方体の内部の点と対応する (数 a,b,cの範囲を区間[0,1]の実数とする) ・このとき、2次式 f(x)=a+bx+cx^2の集合から、無作為抽出で集合の元を取り出すことを考える これは、3次元ユークリッド空間 (a,b,c) [0,1]^3 の立方体の内部の点を、取り出すことに相当する ・無作為抽出なら、普通にc≠0の空間の点 つまり2次式 f(x)=a+bx+cx^2(c≠0)が選ばれるべきだ ・勿論、作為をもってすれば、c=0の空間の点を選ぶことは可能 例えば、c=0で1次式 f(x)=a+bx (b≠0)とすることは可能(有意抽出) ・しかし、c=0の空間の点は、xy平面を成し その体積は0であるから、無作為抽出で選ばれる確率は0だ この考えを、時枝の決定番号の確率計算に当て嵌めれば、 彼の確率計算が、成り立っていないことが分かるだろう (”これを一般化すると、D+1次元の超体積V''=1に対し D次元以下では、その場合の超体積V''は0に潰れているということが分かる”の部分な) 今回は、ここまで http://rio2016.5ch.net/test/read.cgi/math/1660377072/195
196: 132人目の素数さん [] 2022/09/10(土) 11:37:21.88 ID:qj1cTL8E >>195 補足 (引用開始) ・しかし、c=0の空間の点は、xy平面を成し その体積は0であるから、無作為抽出で選ばれる確率は0だ この考えを、時枝の決定番号の確率計算に当て嵌めれば、 彼の確率計算が、成り立っていないことが分かるだろう (”これを一般化すると、D+1次元の超体積V''=1に対し D次元以下では、その場合の超体積V''は0に潰れているということが分かる”の部分な) (引用終り) 結論を先に書いておくよ 時枝記事では、決定番号(>>132 >>162 & >>169 ご参照) を用いて、99/100などという確率計算を行っているが 決定番号の”無作為抽出=ランダム・サンプリング(英: random sampling)”性 (下記ご参照) が、大いに疑問で、無作為抽出が成り立っていないと思う 無作為でなく、有意抽出(定義は下記)された決定番号を使って、 確率 99/100を導いている だから、全体としては まっとうな確率計算になっていない!! そういうことを、 順次、解き明かしていきます (参考) https://ja.wikipedia.org/wiki/%E7%84%A1%E4%BD%9C%E7%82%BA%E6%8A%BD%E5%87%BA 無作為抽出=ランダム・サンプリング(英: random sampling) 概要 その名の通り、ある集団から要素を抽出するのに、作為的な手順を使わないことが特徴である。そのため、無作為抽出法によるサンプリングを行うと、集団の全ての要素が同じ確率で抽出されることになる。 他に、全体から作為的に抽出する「有意抽出」がある。 例えばクラスの掃除当番を選ぶ場合、「出席簿からくじで無作為に抽出した出席番号の生徒を掃除当番に任命する」のが無作為抽出で、 「先生が気に入った奴を掃除当番に任命する」のが有意抽出である。 (ここ 気に入らない奴では?w) http://rio2016.5ch.net/test/read.cgi/math/1660377072/196
209: 132人目の素数さん [] 2022/09/11(日) 08:37:11.94 ID:cFRF8/nb >>208 つづき 1)前レスで、ランダムサンプリングができない非正則な分布>>51について説明した この場合、できるのは作為によるサンプリング(有意抽出>>196)のみ 2)これを時枝記事>>1に見ると、人は自然に ”決定番号∈自然数N”だからと 直感的に100個の数 d1<d2<d3<・・・<d100 を思う(>>162) そして、d1,d2,d3,・・・,d100から、作為でこれらに対応する代表元を思い浮かべる が、これが作為だという自覚が無い人が大半だ(大学レベルの確率論や確率過程論を習得した人以外では) 3)代表元は、ユークリッド空間の点と考えることができる(>>195) また、代表元の集合は、多項式環と見ることが出来て(>>189-190) 多項式環は、無限次元空間だ(>>190) 4)だから、d1<d2<d3<・・・<d100 を、常にd100 +1次元のユークリッド空間に埋め込むことが出来て d100 +1次元のユークリッド空間の超体積V''中では0に潰れているということが分かる>>196 5)d1<d2<d3<・・・<d100から、99個の数を選びその最大値をDmax99としよう>>43 時枝記事に従って、Dmax99+1番目までの箱を開ける(下記の数学セミナー記事ご参照) このとき、二つのことが起きる a)問題の列と代表列の比較で、一致部分は既に終わっていて、Dmax99+1番目の箱の数は一致しない!(問題の列の決定番号>Dmax99+1) b)問題の列と代表列の比較で、一致部分はまだ終わっておらず、Dmax99+1番目の箱の数まで一致(問題の列の決定番号<=Dmax99+1) 6)上記b)の場合、Dmax99+1番目の箱の数まで、無限の箱の数が一致するのだから、その確率は0だ これはちょうど、上記4)項の「超体積V''中では0に潰れている」と整合する つまり、b)のケースが起こるのは、作為によるときのみです よって、99/100はイカサマ確率です (参考) https://rio2016.5ch.net/test/read.cgi/math/1620904362/403 時枝問題(数学セミナー201511月号の記事) http://rio2016.5ch.net/test/read.cgi/math/1660377072/209
272: 132人目の素数さん [] 2022/09/17(土) 22:14:43.62 ID:2w4pRyyr >>271 1)まず、時枝記事の可算無限数列のしっぽの同値類とその代表と決定番号について 形式的冪級数環における、形式的冪級数のしっぽの同値類と見なすことができて それは、多項式環と多項式の次数に置き換えることができると説明しただろ?>>168-170 2)そして、多項式環は無限次元である>>250 n次多項式 a0+a1x+a2x^2+a3x^3+・・・+anx^n は n+1次元 ユークリッド空間の点 (a0,a1,a2,a3,・・・,an)と考えることができる>>209&>>195 同様に、多項式環は無限次元だから、無限次元ユークリッド空間の点 (a0,a1,a2,a3,・・・,an,・・・)と考えることができる 3)代数では、式は作為で取るから 別に困らないが、確率論ではこれは困る 無限次元ユークリッド空間から、無作為抽出である点を取ると(無作為の定義は棚上げとして) 普通に、点(a0,a1,a2,a3,・・・,an,・・・)であって、一般性を失わず どのa0,a1,a2,a3,・・・,an,・・・ たちも0で無いと仮定することができる このa0,a1,a2,a3,・・・,an,・・・から、 無限次の多項式もどきの式 a0+a1x+a2x^2+a3x^3+・・・+anx^n+・・・を作ることができる 4)従って、d1<d2<d3<・・・<d100 と考えることが、 根本的にまずいとおもうぜ>>209 代数では多項式環について、多項式のみを考えれば良いのだが 5)なお、繰り返すが多項式環を確率計算に応用しようとして、多項式環からの無作為抽出を考えると、 無限次の多項式もどきの式を考える必要が出てくるってことです 普通は(代数では)、多項式環で無限次の多項式もどきの式は扱わない ここらが、時枝記事のトリックでしょうね http://rio2016.5ch.net/test/read.cgi/math/1660377072/272
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s