[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
169: 132人目の素数さん [] 2022/09/07(水) 14:19:04.01 ID:7YSV3p8I >>168 つづき https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 多項式環 定義 体 K に係数を持つ不定元 X に関する多項式とは P=p_mX^m+p_m-1X^m-1+・・・ +p_1X+p_0 の形の式のことである。ここで p_0, …, p_m は K の元で、P の係数といい、X, X^2, … は形式的な記号だが X の冪という。 係数が零であるような項 p_k?X^k (pk = 0) は省略することができる。 注意すべき点として、多項式には項が有限個しかないこと -つまり十分大きな k(ここでは k > m)に関する係数 p^k がすべて零であるということ- は、暗黙の了解である。多項式の次数とは X k の係数が零でないような最大の k のことである。特別な場合として、零多項式(係数が全て零)の次数は定義しないか、あるいは負の無限大 -∞ と定義する。 体 K に係数を持つ多項式全体の成す集合は可換環を成し、K[X] で表して、K 上の多項式環 (ring of polynomials over K) と呼ぶ。記号 X は普通「変数」と呼び、もうすこし一般の多変数の多項式環と区別するためにここでの多項式環を K 上一変数の多項式環と呼ぶ。 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 https://rio2016.5ch.net/test/read.cgi/math/1620904362/402 実数列の集合 R^Nを考える. s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s ~ s'と定義しよう(いわばコーシーのべったり版). 念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する. sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/169
170: 132人目の素数さん [] 2022/09/07(水) 20:57:39.32 ID:HNz4ykyw >>169 つづき 先に書いておくが、もちろん、この話は時枝トリックを暴くことにある さて、形式的冪級数として、下記の指数関数 exp(x)=e^x を考える べき級数展開で、その係数は 1,1,1/2!,1/3!,・・1/n!,・・ となることはよく知られている いま、多項式環(>>169)で、係数は実数Rとして、その記号を借用すれば、R[X]で実係数多項式環を表すとして また、下記の同値類の記号[a]を借用して、指数関数をしっぽとする同値類は[e^x]と書ける [e^x]={e^x+f(x)|f(x)∈R[X] } (くどいが、補足すると、f(x)は実係数多項式で多項式環R[X]の元。e^x+f(x)の冪級数のしっぽがe^xと一致することは自明(∵f(x)は有限次数の多項式)) これで、わかりのいい人は、もう見えているだろうが 時枝の可算無限個の数列およびしっぽの同値類と、その数列を係数とする形式的冪級数環および多項式環との関係がついた なお、念のため注意しておくが、多項式環はその元は有限次数多項式だが、この式の次数には上限がない (∵n次とm次の積から、n+m次式が出来て、それも環の元だから) つまり、個々の元は有限次だが、集合としての環は無限次(上限が無い)なのです(ちょうど自然数が元は有限でも、集合は無限集合になるが如し) ここも押えておきたい 今回はここまで。今後を、請うご期待 (参考) https://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E9%96%A2%E6%95%B0 指数関数 exp(x)=e^x=1+x+1/2!x^2+1/3!x^3・・+1/n!x^n+・・=Σn=0~∞ 1/n!x^n https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%A1%9E 同値類 記法と定義 元 a の同値類は [a] と書き,a と ? によって関係づけられる元全体の集合 [a]={x∈ X |a ~ x} として定義される. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/170
173: 132人目の素数さん [sage] 2022/09/08(木) 06:35:12.96 ID:rZv9TRgF >>167-170 中卒が大学数学で落ちこぼれた理由がよくわかる 計算はできても論理は理解できない「人間失格の畜生」なんだな(嘲) http://rio2016.5ch.net/test/read.cgi/math/1660377072/173
196: 132人目の素数さん [] 2022/09/10(土) 11:37:21.88 ID:qj1cTL8E >>195 補足 (引用開始) ・しかし、c=0の空間の点は、xy平面を成し その体積は0であるから、無作為抽出で選ばれる確率は0だ この考えを、時枝の決定番号の確率計算に当て嵌めれば、 彼の確率計算が、成り立っていないことが分かるだろう (”これを一般化すると、D+1次元の超体積V''=1に対し D次元以下では、その場合の超体積V''は0に潰れているということが分かる”の部分な) (引用終り) 結論を先に書いておくよ 時枝記事では、決定番号(>>132 >>162 & >>169 ご参照) を用いて、99/100などという確率計算を行っているが 決定番号の”無作為抽出=ランダム・サンプリング(英: random sampling)”性 (下記ご参照) が、大いに疑問で、無作為抽出が成り立っていないと思う 無作為でなく、有意抽出(定義は下記)された決定番号を使って、 確率 99/100を導いている だから、全体としては まっとうな確率計算になっていない!! そういうことを、 順次、解き明かしていきます (参考) https://ja.wikipedia.org/wiki/%E7%84%A1%E4%BD%9C%E7%82%BA%E6%8A%BD%E5%87%BA 無作為抽出=ランダム・サンプリング(英: random sampling) 概要 その名の通り、ある集団から要素を抽出するのに、作為的な手順を使わないことが特徴である。そのため、無作為抽出法によるサンプリングを行うと、集団の全ての要素が同じ確率で抽出されることになる。 他に、全体から作為的に抽出する「有意抽出」がある。 例えばクラスの掃除当番を選ぶ場合、「出席簿からくじで無作為に抽出した出席番号の生徒を掃除当番に任命する」のが無作為抽出で、 「先生が気に入った奴を掃除当番に任命する」のが有意抽出である。 (ここ 気に入らない奴では?w) http://rio2016.5ch.net/test/read.cgi/math/1660377072/196
272: 132人目の素数さん [] 2022/09/17(土) 22:14:43.62 ID:2w4pRyyr >>271 1)まず、時枝記事の可算無限数列のしっぽの同値類とその代表と決定番号について 形式的冪級数環における、形式的冪級数のしっぽの同値類と見なすことができて それは、多項式環と多項式の次数に置き換えることができると説明しただろ?>>168-170 2)そして、多項式環は無限次元である>>250 n次多項式 a0+a1x+a2x^2+a3x^3+・・・+anx^n は n+1次元 ユークリッド空間の点 (a0,a1,a2,a3,・・・,an)と考えることができる>>209&>>195 同様に、多項式環は無限次元だから、無限次元ユークリッド空間の点 (a0,a1,a2,a3,・・・,an,・・・)と考えることができる 3)代数では、式は作為で取るから 別に困らないが、確率論ではこれは困る 無限次元ユークリッド空間から、無作為抽出である点を取ると(無作為の定義は棚上げとして) 普通に、点(a0,a1,a2,a3,・・・,an,・・・)であって、一般性を失わず どのa0,a1,a2,a3,・・・,an,・・・ たちも0で無いと仮定することができる このa0,a1,a2,a3,・・・,an,・・・から、 無限次の多項式もどきの式 a0+a1x+a2x^2+a3x^3+・・・+anx^n+・・・を作ることができる 4)従って、d1<d2<d3<・・・<d100 と考えることが、 根本的にまずいとおもうぜ>>209 代数では多項式環について、多項式のみを考えれば良いのだが 5)なお、繰り返すが多項式環を確率計算に応用しようとして、多項式環からの無作為抽出を考えると、 無限次の多項式もどきの式を考える必要が出てくるってことです 普通は(代数では)、多項式環で無限次の多項式もどきの式は扱わない ここらが、時枝記事のトリックでしょうね http://rio2016.5ch.net/test/read.cgi/math/1660377072/272
576: 132人目の素数さん [] 2022/10/07(金) 08:03:07.10 ID:JooN1fem >>560 補足 >時枝記事が正しければ、 >無限のランダムウォーク中にひとつ >ランダムウォークのしっぽ同値類を使って、確率99/100で的中できる >というアホな話になるw まあ、現代確率論、確率過程論で 時枝記事がデタラメということは、すぐ分かる だが、時枝記事の謎解きは別だ 時枝記事の謎解きは、 可算無限数列(実無限)>>1 ↓ 形式的冪級数(環)>>168 ↓ しっぽの同値類=多項式(環)>>169(可能無限)>>472 ↓ 可能無限から反例構成できる という流れで説明できるだろう つまり 1)形式的冪級数環で、その級数のしっぽの同値類を考える 2)同じ同値類の二つの元の差を取ると、しっぽの部分が消えて、多項式になる 具体的には、二つの元を下記とする τa=a0+a1x+a2x^2・・+anx^n+an+1x^n+1 ・・ τb=b0+b1x+b2x^2・・+bnx^n+an+1x^n+1 ・・(つまり、n+1項以上のしっぽ部分が一致) f(x)=τa-τb で n次多項式になる(式の計算はスペースの都合で略す) 3)逆に、一つの形式的冪級数τに対して、 その同値類の元は、τ+f(x) と書ける (τの例としては、超越関数の原点x=0での級数展開をイメージして貰えば分かり易いだろう) 4)いま、出題された数列から、τ+f(x) が構成できたとしょう そして、この同値類における代表を、τ+fd(x)としよう 5)時枝の記事>>1は、ある大きな次数(自然数)mを取れば、 m以上の項は、同値類でしっぽの共通部分に当たるから、 代表のτ+fd(x)を見れば、問題のτ+f(x) の共通のしっぽの部分も推察がつくというものだ>>1 6)時枝記事は、99個の列を作って、それらの決定番号の最大値 Dmax99 を得て それを上記mとして利用しようというもの それで、確率99/100を得るという (決定番号の説明は https://rio2016.5ch.net/test/read.cgi/math/1620904362/402 ご参照) (確率99/100は https://rio2016.5ch.net/test/read.cgi/math/1620904362/403 ご参照) 7)しかし、多項式環は、無限次元線形空間(>>189 都築 暢夫 広島大)であるから 原理的に、有限の Dmax99 を与えても、確率99/100と出来ないことは自明だろう 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/576
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s