[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
165: 132人目の素数さん [] 2022/09/06(火) 20:38:03.69 ID:+kdNx5e4 <転載> ホテル「無限」ヘようこそ https://rio2016.5ch.net/test/read.cgi/math/1660367012/32 ROMのつもりだったけど少し燃料を投下しよう 1)無限列として、半開区間[0、10)の実数を考える (e、πがこの範囲) (常識だが、3.14で、4は小数第2位となる) 2)簡単に10進無限小数を考えると、これが上記の無限列の例を構成する (勿論p進展開もありだが) この場合、数列の各項に入る数は0~9の整数になる 3)下記は、よく知られていることだが a)無限小数で、ある小数第n+1位から先のしっぽが0である場合、それは有限小数である。普通は0を省いて記す 例 3.1400000・・→3.14 b)有理数では、無限小数だが、しっぽが循環する場合がある 例 1/3=0.33333・・ c)循環しない無限小数(有限でない)は、無理数で、代数的数と超越数に分けられる 例 √2、π 4)さて、無限小数のしっぽの同値類を考えると 二つの無限小数 aとb が、同じ同値類だとする。ある小数第n+1位から先のしっぽ一致しているとすると aーb =c とすると、cは有限小数になる (∵ ある小数第n+1位から先のしっぽ一致しているので、差を作ると全て0になるため) 5)逆に、(有限でない)無限小数bに対し、同じ同値類の数aは、 a=b+c とできる(cは有限小数) 6)なお問題は、人は任意の二つの(有限でない)無限小数が同じ同値類に属するか否かを見分ける手段をまだ持たないこと 例 e+π、e-πは、有理数であるのか無理数であるのか超越的であるのか否かは証明されていない (下記の 超越数かどうかが未解決の例 より) (円周率 π 、ネイピア数 e) 7)なので、理念としての無限小数のしっぽの同値類分類は可能であるが、 それを具体的に、全同値類を完成してその代表を選ぶことなどできないのです(多分将来も全同値類の完成は不可能でしょう) (参考) https://ja.wikipedia.org/wiki/%E8%B6%85%E8%B6%8A%E6%95%B0 超越数 超越数かどうかが未解決の例 http://rio2016.5ch.net/test/read.cgi/math/1660377072/165
166: 132人目の素数さん [] 2022/09/06(火) 22:23:05.47 ID:XKKotumU >>165 完璧に論破されたレスを転記するとは気でも狂ったか? http://rio2016.5ch.net/test/read.cgi/math/1660377072/166
167: 132人目の素数さん [] 2022/09/07(水) 07:50:27.51 ID:HNz4ykyw >>165 補足 わかりの悪い人たちがいる 無限列のしっぽの同値類 一つのモデルが、10進無限小数のしっぽの分類 次は、別のモデルで説明する その前振りで、転載した わかりのいい人は、もう見えているかも なお、忙しいので、何回かに分けてやります http://rio2016.5ch.net/test/read.cgi/math/1660377072/167
168: 132人目の素数さん [] 2022/09/07(水) 14:18:36.28 ID:7YSV3p8I >>167 >次は、別のモデルで説明する さて 1)下記の形式的冪級数を考える。形式的冪級数環を成す(下記) 2)二つの形式的冪級数A1[[X]]とA2[[X]]の各項の係数の成す数列が、時枝のしっぽの同じ同値類に属するとする P[x]=A1[[X]]-A2[[X]] と書ける つまり、同値類においてある番号dから先の係数が一致するから、 それらの項は差を取ると消し合って、初項~d-1までの項が残り、多項式となる 簡便のため、下記時枝記事にはs0を追加してs = (s0,s1,s2,s3 ,・・・)として、s0の部分を定数項相当と考える P[x]は、d-1次の多項式になり、 P[x]=p0+p1X+p2x^2・・・+pd-1X^d-1と書ける p0,p1,p2・・・,pd-1 などは、A1[[X]]とA2[[X]]の各項の係数の差になる 3)逆にいうと、A1[[X]]=A2[[X]]+P[x]と書けるならば、A1[[X]]とA2[[X]]とは、 (各項の係数を数列と見て)同じ時枝の同値類であって A1[[X]]とA2[[X]]との係数による数列は、時枝氏の数列の同値類を成す(下記時枝氏記事ご参照) 4)このモデルの利点は、各項(時枝氏では箱の中の数)に実数を考えうる点にある それが、>>165の10進無限小数モデルとの違いです 今はここまで。今後を、請うご期待 https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0 形式的冪級数 多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。 A を可換とは限らない環とする。 形式的冪級数全体からなる集合 A[[X]] に和と積を定義して環の構造を与えることができ、これを形式的冪級数環という。 つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/168
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s