[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
115: 132人目の素数さん [] 2022/08/29(月) 07:16:51.45 ID:gRc124MO >>111 追加 時枝記事のトリック 2 1)いま、p進小数展開の各桁を箱に入れたとしよう 2)まず、有限m桁を考える 小数1位からm位までの長さmの数列ができる しっぽの同値類は、最後のm位の箱で決まる 簡単に2列X、Yとして、同じ同値類で最後の箱は一致しているので、決定番号D<=m(m以下)である いま、m-1位が一致する確率は1/pで、このとき決定番号D<=m-1である 同様に、m-2位までが一致する確率は1/p^2で、このとき決定番号D<=m-2である m-n位までが一致する確率は1/p^nで、このとき決定番号D<=m-nである(但し、1<=n<m) つまり、m-nでnが大きくなると、1/p^nは小さくなり、出現確率は小さくなることに注意しよう 3)さて、時枝の可算無限長の数列ではどうか? いま、決定番号D(有限)が得られたとしよう これは、上記2)のように、Dから先の無限個の箱の数が全て一致していることを意味する その確率は、明らかに1/p^∞=0(確率0)である 4)ここで、錯覚しやすい点で注意が必要なのが、確率0と非存在とは異なるということ 確率0でも存在は可能(例 区間{0,1}の1点実数rは、確率は0(零集合)だが、存在する) なので、無限長列の有限決定番号Dは存在するが、その確率は0だ 存在確率0の有限決定番号を使って、99/100を導いても、実際の確率は(99/100)*0=0(二つの事象の積)となる これが、もう一つの時枝記事のトリック説明です http://rio2016.5ch.net/test/read.cgi/math/1660377072/115
116: 132人目の素数さん [] 2022/08/29(月) 09:51:14.43 ID:gbivy0QQ >>115 >いま、決定番号D(有限)が得られたとしよう これは確率事象ではない、つまり確率1、よって > 存在確率0の有限決定番号を使って、99/100を導いても、実際の確率は(99/100)*0=0(二つの事象の積)となる は大間違い 馬鹿の考え休むに似たり 馬鹿が自分で考えても間違った結論しか出ずまったく無価値。正しい結論を得るには数学書を一から勉強することだ。勉強嫌いのセタには無理かもな。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/116
118: 132人目の素数さん [] 2022/08/30(火) 20:52:03.45 ID:CQLzxpCp >>115 > いま、決定番号D(有限)が得られたとしよう > これは、上記2)のように、Dから先の無限個の箱の数が全て一致していることを意味する > その確率は、明らかに1/p^∞=0(確率0)である ワケワカさんが居るので、くどいが補足します <補足> 1)決定番号D(有限)の定義は”Dから先の無限個の箱の数が全て一致していることを意味する”で、時枝記事の通りです(下記ご参照) 2)確率計算で、まず、列長さが有限から考えよう ・列長さ1つまり1対の箱で、p進で0~p-1の数をランダムに入れるとすると、列が一致する確率は1/p(∵全体はp^2通りで、一致はp通りだからp/p-2=1/p) ・列長さ2つまり2対の箱で、p進で0~p-1の数をランダムに入れるとすると、列が一致する確率は1/p^2 ・列長さnつまりn対の箱で、p進で0~p-1の数をランダムに入れるとすると、列が一致する確率は1/p^n ・列長さ可算無限長の箱の数列で、p進で0~p-1の数をランダムに入れるとすると、列が一致する確率は1/p^∞=0 (∵n→∞) 3)さて、時枝記事では、決定番号Dで可算無限長の列で、先頭から数えて、Dから先の無限個の箱の数が全て一致しているという そのような状態を生じる確率は、上記2)項の最後の計算が適用できて、確率0となる 4)なお、>>115で述べたことを繰り返すが、確率0と非存在とは異なる 無限長列の有限決定番号D(及びそれを生じる列)は存在するが、その確率は0 存在確率0の有限決定番号を使って、99/100を導いても、実際の確率は(99/100)*0=0となる(二つの事象の積) 以上 (参考) 決定番号の定義は、下記174にあり 箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/172-174 http://rio2016.5ch.net/test/read.cgi/math/1660377072/118
123: 132人目の素数さん [] 2022/08/31(水) 23:42:53.14 ID:ygHP/ZsD >>91 補足 >現代数学の系譜11 ガロア理論を読む20 https://wc2014.5ch.net/test/read.cgi/math/1466279209/532 532 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A [11/13] > 2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) ここ「d_Xとd_Yがそもそも分布を持たない可能性すらある」を掘り下げてみよう 1)いま、p進小数を考える。各桁に、0~p-1の数が入る 簡単に、有限長で4桁の小数で、問題の数列を .0000とする 同値類は、4桁目が0で、X1,X2,X3,0と書ける X3が0以外ならば、決定番号d=4以下で、場合の数 はp^3通り X3が0ならば、決定番号d=3以下で。場合の数 はp^2通り よって、決定番号がちょうどd=4の場合の数 は、p^3-p^2通り 全体のp^3で割ると、(p^3-p^2)/p^3=1-1/p つまり、p=10なら、9割が決定番号がちょうどd=4となる つまり、殆どがd=4 2)さて、pを十分大きく取ると、殆ど全ての場合で、決定番号がちょうどd=4となる そして、時枝ではpを自然数全体とすることも可能で、この場合決定番号がちょうどd=4となる確率は1である 3)さらに、上記有限長で4桁について、もっと長い数列を考えることができる 列の長さをLとする。上記のように、決定番号は最後の箱で決まり、決定番号d=Lとなる確率は1だ これについては、別の言い方をしておこう ・列の長さLが十分大きければ、決定番号1となる確率は0 同様に、決定番号2の場合の確率も0、・・、決定番号n<<Lの場合の確率も0といえる 4)上記3)項は、>>115の3)項の結論 ”Dから先の無限個の箱の数が全て一致していることを意味する その確率は、明らかに1/p^∞=0(確率0)である” と一致している これが、時枝トリックのタネの一つ http://rio2016.5ch.net/test/read.cgi/math/1660377072/123
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s