[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
831: 132人目の素数さん [] 2022/10/19(水) 08:05:33.46 ID:xfu4AEGC お主の頭、腐っているなw まず、文字化け訂正>>828 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 可測集合 集合には '長さ' や '重さ' が定まるものがある。例えば、区間 [0, 1]は長さ1を持つと思われる。; もっと一般的に、区間[a, b] (a <= b) は長さ b - a を持つと思われる。このような区間を一様な密度の金属棒と見ると、同じように重さも定義可能である。集合 [0, 1] ∪ [2, 3] は長さ1の二つの区間の合併であるので、この集合の全長は2と考える。重さで考えても同様に2と考えられる。ここで自然に次の問題が発生する: 実数直線の任意の部分集合 E に対して、必ず '重さ' や '全長'は得られるのか? 例えば、[0, 1] 上の有理数集合はどんな重さになるであろうか。有理数集合は実数直線の中で稠密なので、非負の値が適切であろう。重さに最も近い一般化はσ-加法性を持つルベーグ測度である。この測度は [a, b] の長さに b - a を割り当て、可算集合である有理数全体の集合には 0 を割り当てる。ルベーグ測度が定められる集合をルベーグ可測集合と呼ぶ。しかし、ルベーグ測度の構成(カラテオドリの拡張定理を使う)自体からは非可測集合の存在は明らかに分かることではない。その問題に対する答えは選択公理を仮定するかどうかをも問うことになる。 (引用終り) つまり、ヴィタリ集合V(非可算)は、実数Rのルベーグ測度中では、0,∞を含むいかなる値も不可だということ>>828 しかし、自然数Nや有理数Qは、可算だから、0か∞は可 付言すると、実数Rのルベーグ測度の対極に、下記数え上げ測度がある 数え上げ測度中では、自然数Nや有理数Qは、∞ 数え上げ測度の意味で、非正則分布である自然数Nがある!>>51 いずれにせよ、自然数Nや有理数Q(可算)は、可測集合です!w ヴィタリ集合V(非可算)は、非可測です! 両者は、別物ですよwww (参考) https://ja.wikipedia.org/wiki/%E6%95%B0%E3%81%88%E4%B8%8A%E3%81%92%E6%B8%AC%E5%BA%A6 数え上げ測度 数え上げ測度(かぞえあげそくど、英: counting measure; 計数測度)とは、集合の元の個数を数えるという方法でその "大きさ"(あるいは "容積")を測る、ルベーグ積分における測度の一種である。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/831
847: 132人目の素数さん [] 2022/10/19(水) 20:45:12.75 ID:xfu4AEGC 必死だな 時枝記事不成立は、数学的事実なので (現代数学の確率論 可算無限個のiidの確率変数 Xi i∈N で扱えるから、時枝は詰んでいる) そんなことをしても、無駄だよ あとは、なぜ不成立なのに 成立しているように見えるか その数学的謎解きだけが、残っている いま、それをしているだけ http://rio2016.5ch.net/test/read.cgi/math/1660377072/847
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.390s*