[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
497: 2022/09/30(金)10:37 ID:psVftveJ(1/14) AAS
>>496
>2)では、多項式環から、無作為(ランダム)にn次多項式を取り出すことは可能か?
> (そもそも、ランダム性の定義が問題だが、そこはいまはツッコミなしとして)
> ある人が、ランダムに取り出したらm次式になったとしよう
> しかし、多項式環は無限次元線形空間>>489だから、m次よりももっと大きな多項式であるべき
> m次の百億倍の次数の多項式を取り出したとする。それでも足りない・・・(繰り返し)
>3)そもそもが、多項式環の元の多項式の次数は、サンプリングしたら、その平均値ないし中央値は発散している
省6
498: 2022/09/30(金)10:42 ID:psVftveJ(2/14) AAS
では、決定番号が有限値でありさえすれば、時枝戦術が正しく機能するのはなぜか?
まず、出題者は x∈[0,1]^N をランダムに出題する。
すると、出力される100個の決定番号 d1,d2,…,d100 は全て有限値である。特に、

d i > max{dj|1≦j≦100, j≠i}

を満たす di は100個の中に高々1つしかない(=ハズレが1つしかない)。
そして、回答者はこの100個の中からランダムに1つ選ぶ。よって、回答者の勝率は 99/100 以上となる。

スレ主が指摘するように、サンプリングを繰り返せば繰り返すほど、
省12
499
(3): 2022/09/30(金)10:54 ID:psVftveJ(3/14) AAS
>>480に沿って、具体例を1つ挙げる。

ここに封筒1〜封筒100の100枚の封筒があって、
どの封筒にも、確率 1/2^n で 4^n ドルが入っているとする(n≧1)。

回答者は、100枚の封筒の中からランダムに1枚の封筒を選んで、
その封筒の表面に「*」という印をつける。そして、100枚の封筒を一斉に開封する。

(*がついた封筒の中身) > (それ以外の封筒の中身の最大値)

が成り立つ場合には、回答者は何も貰えない(このケースは回答者の「負け」とする)。
省6
500
(2): 2022/09/30(金)11:01 ID:psVftveJ(4/14) AAS
今回の例では、封筒の中身の期待値は +∞ なので、サンプリングを繰り返せば繰り返すほど、
100枚の封筒の中身は大きくなっていく。だからと言って、

「上記の回答者の行動が機能不全に陥って矛盾を引き起こす」

とか

「回答者の実際の勝率はゼロである」

などといった頭の悪い状況にはならない。
省9
501
(3): 2022/09/30(金)11:13 ID:psVftveJ(5/14) AAS
あるいは、次のような言い方をしてもよい。

とにかく100個の決定番号 d1〜d100 が有限値でありさえすれば、時枝戦術は正しく機能する。
よって、少なくともサンプリングの1回目に関しては、時枝戦術は正しく機能する。
なぜなら、サンプリングの1回目は、必ず100個の有限値が出力されるからだ。

では、2回目のサンプリングはどうか?
1回目よりもd1〜d100の値が大きくなっているかもしれない。しかし、それでもd1〜d100は有限値である。
ただ単に、1回目より大きいかもしれないというだけの話であって、結局は有限値である。
省7
505: 2022/09/30(金)13:59 ID:psVftveJ(6/14) AAS
>>504
>2回の値が、n回目に比べて著しく小さいとしたら、
>2回の値は”ランダムです”と言えないだろ?
>任意のn回についても同様に、”ランダムです”と言えないww

文章が読めてないね。>>501では、

「大きくなっている か も し れ な い 」

としか言ってないでしょ。大きいかもしれないし、小さいかもしれない。
省8
506: 2022/09/30(金)14:02 ID:psVftveJ(7/14) AAS
>>504
>それに、そもそも漸増する値なのだから
>お得意の”固定”だって、完全に否定されているじゃんかww

文脈が全く読めていないね。スレ主がランダムに固執するからこそ、

「実数列をランダムに出題する」

という立場に「敢えて乗っかってやった」のである。
そして、この設定下ですら、時枝戦術は勝てる戦術なのである。
省2
507
(1): 2022/09/30(金)14:11 ID:psVftveJ(8/14) AAS
>>504
>2回の値が、n回目に比べて著しく小さいとしたら、
>2回の値は”ランダムです”と言えないだろ?
>任意のn回についても同様に、”ランダムです”と言えないww

これについて追加でレスしておくが、>>501のような表現の仕方が気に入らないのなら、
スレ主が望むような形で「サンプリング結果」を勝手に用意すればいい。

時枝戦術は、スレ主が用意してきたサンプリング結果に対しても
省1
508
(1): 2022/09/30(金)14:17 ID:psVftveJ(9/14) AAS
今ここに、

「これこそ "ランダム" を体現している完璧なサンプリング結果だ!!」

とスレ主が認めるような、可算無限回分のサンプリング結果が存在したとする。
というより、そのような完璧なデータを、スレ主の方から提示してきたとする。
すると、これはスレ主が提示したデータなのだから、
もはやスレ主はサンプリングの内容について文句は言えない。

さて、その可算無限回のサンプリングのうち、k 回目のデータを見てみよう。
省5
509: 2022/09/30(金)14:41 ID:psVftveJ(10/14) AAS
さて、スレ主の詭弁を振り返っておこう。

・ サンプリング結果が "ランダム" でないなら、時枝戦術で勝ててしまっても不思議はない。
  しかし、ランダムではない時点でイカサマ師によるインチキが介入していることになるので、
  結局、時枝戦術はイカサマ師が事前にインチキしなければ勝てない戦術である。
  言い換えれば、サンプリング結果が正しく "ランダム" になっていれば、時枝戦術は勝率ゼロになる。

これがスレ主の詭弁である。この詭弁は、下記の3種類の方法で論破可能である。

1つ目の論破方法:「これこそ "ランダム" を体現した理想的なサンプリング結果だ」
省3
510: 2022/09/30(金)14:48 ID:psVftveJ(11/14) AAS
2つ目の論破方法:スレ主は出題を固定することを「作為・インチキ」だと称しているが、これはつまり、
出題者の出題の仕方に注文をつけなければ「時枝戦術は勝率ゼロ」と主張できないことを意味する。
しかし、そうなってしまった時点で、もはや「時枝戦術は勝率ゼロ」を主張していることにはならない。
なぜなら、本来の「勝率ゼロ」とは、「出題の仕方によらず、必ず勝率ゼロだ」という意味だからだ。
スレ主はそのような立場を放棄して、出題者の出題の仕方に注文をつけているのだから、
その時点で、本来の意味での「勝率ゼロ」は全く主張できてないことになる。

3つ目の論破方法:そもそも、出題を固定することは作為でもなければインチキでもない。
省3
514: 2022/09/30(金)22:45 ID:psVftveJ(12/14) AAS
>>513
>2)さて、0からmまでの一様分布とする。平均値はm/2だ
> m→∞とすると、平均値 m/2→∞
> つまり、非正則な分布>>51
> で、非正則な分布から d1,d2,・・d100と100個の数をサンプリングした
> 平均値は (d1+d2+・・+d100)/100 だが
> 非正則分布で 平均値 m/2→∞と矛盾
省3
515: 2022/09/30(金)22:46 ID:psVftveJ(13/14) AAS
別の言い方をすれば、スレ主は

「 [0,+∞) 上の一様分布を実現するようなサンプリングは存在しないので、時枝戦術は当たらない」

という詭弁をかましていることになる。だったら、全く同じ理由により、
>>499-500の「100枚の封筒」でも、回答者の勝率はゼロということになってしまう。
しかし、実際には、>>499-500における回答者の勝率は 99/100 以上である。

これはどういうことかと言えば、回答者の勝率を計算するにあたって、
[0,+∞)上の一様分布を実現するようなサンプリングは必要ないということである。
省2
516: 2022/09/30(金)23:09 ID:psVftveJ(14/14) AAS
もっと簡単な例を挙げよう。

ここに正整数を出力する機械 A があって、正整数 k を出力する確率は 1/2^k であるとする(k≧1)。
回答者はこの機械 A を1度だけ動かす。出力された正整数が 2022 以下だったら回答者の勝ちで、それ以外なら回答者の負け。

すると、回答者の勝率は Σ[k=1〜2022] 1/2^k = 1−1/2^2022 である。すなわち、回答者が高確率で勝利する。
ところが、スレ主の屁理屈によれば、以下のようになる。

・ そもそも正整数全体の一様分布は存在しない。特に、正整数全体の一様分布を実現するサンプリングは不可能。
  よって、上記の機械 A に関するランダムサンプリングを行おうとしても、それは原理的に不可能で、
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.053s