[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
558: 132人目の素数さん [] 2022/10/05(水) 20:33:19.79 ID:oBMJzSNW >>550 補足 無限次元補足 https://ibaibabaibai-blog.hatenadiary.org/entry/20100726/1280151423 ibaibabaibai_blogの日記 2010-07-26 院生のための算数入門(最終回 10) 無限次元 「ベクトルの間の距離」やその元になる「ベクトルの大きさ」には,有限次元であろうと無限次元であろうと,いろんなものがある,という認識がまず必要である. それでは,なぜ,無限次元の関数空間の場合だけ,その違いを特にうるさくいうのだろうか.それは,無限次元の場合に限って,ある距離では収束しても,別の距離では収束しない,ということが起こるからである. 極端なことをいうと,2本の曲線の間の面積でその間の距離を定義したとすると,1点,2点,有限個の点だけで関数の値が違っても,収束したことになってしまう.連続的な曲線に限っても,ある点の周辺の狭い範囲だけでずれが生じていて,それがだんだん狭くなるが,ある点でだけは最後までずれている,というようなケースが可能である. 2本の曲線の間の面積を使う距離は,実は関数の間というより関数の同値類の間の距離になっているが,感じはわかると思う.微積分で習う一様収束と各点収束の違い,というのも参考になるだろう. *** このように,無限次元では違う,という話をされると,関数=数式派の人はよいとして,計算機派の人は当惑するかもしれない.100次元でも1000次元でも1億次元でも成り立つことが,無限次元では成り立たないというのは変ではないか. これについては,いくつかの考え方が可能である. つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/558
559: 132人目の素数さん [] 2022/10/05(水) 20:33:50.99 ID:oBMJzSNW >>558 つづき まず,成り立つ程度,ということがある.収束というのは定性的すぎる概念で,どこまで先までの項を考えたらどの程度の誤差で,という定量的な部分は捨象されてしまっている.それを考えると,100次元より1億次元のほうが「結局は成り立つがずっとつらい」ということが出てきて,その極限として「無限次元では成り立たない」ということが理解できるはずだ. それから,100分割,1000分割,1億分割,と増やしていく部分に,極限操作が含まれているが,これは収束の定義に出てくる極限操作とは別のものである.「有限次元では成り立つ」というときは,前者を有限の特定の値に留めておいて,後者の極限を考えているのである.もし,両方の極限の順番が混じり合っていたら,話が違ってくるかもしれない,ということが「無限次元ではだめ」ということの意味だとも考えられる.より具体的には,計算中に分割数を随時増やす,という状況を考えてもいいかもしれない. 最後に,実際は有限次元の場合だって距離によって話は違うのであって,「収束するかしないか」という定性的な面のみに注目したときに,距離によらない,ということになるのだということが,当たり前だが重要である. 現代的な数学では,まず最初に定性的で普遍的な面に着目することが多い.また「無限を含む実体」を最初に構成することで,問題ごと場面ごとの具体的な極限操作を回避する傾向がある.これらは証明や構成を大幅に透明にするが,応用数学,とくにデータ解析などのセンスとはずれが生じることもあり,そのギャップは各自が自分で考えて埋めていく必要がある. *** 余談だが,超関数で有名なシュワルツの自伝によると,彼は4次元以上の「有限次元の空間」というのを学校ではいちども習わなかったそうだ.いきなり無限次元のバナッハ空間を習ったが問題なく理解できたらしい. ここに「関数解析」が「線形代数」の後でなくむしろ並行にできた名残りをみるか,それともフランス人の抽象頭脳に驚くか,さすがシュワルツと思うが,変なの,と思うか,いろいろ考えられるだろう. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/559
560: 132人目の素数さん [] 2022/10/05(水) 21:13:09.12 ID:oBMJzSNW >>550 補足 ”数学セミナー 2022年10月号 特集= ランダムウォークの進む道” ランダムウォークは、確率過程論の典型例 無限のランダムウォークも可能 時枝記事が正しければ、 無限のランダムウォーク中にひとつ ランダムウォークのしっぽ同値類を使って、確率99/100で的中できる というアホな話になるw https://www.nippyo.co.jp/shop/magazines/latest/4.html 数学セミナー 2022年10月号 特集= ランダムウォークの進む道 *確率入門としてのランダムウォーク……原 啓介 8 *ランダムウォークの確率計算トリック……岩沢宏和 14 *ランダムウォークの確率解析/ 局所時間,レヴィの定理,逆正弦法則について ……藤田岳彦・吉田直広 20 *フラクタルの中を歩いてみると?/ フラクタル上のランダムウォーク……服部久美子 24 *マルコフ連鎖と混合時間/カードシャッフルを例にして……白井朋之 30 *離散群とランダムウォーク……田中亮吉 36 *無限グラフ上のランダムウォークと離散幾何……浦川 肇 41 http://rio2016.5ch.net/test/read.cgi/math/1660377072/560
561: 132人目の素数さん [] 2022/10/05(水) 21:16:16.55 ID:oBMJzSNW >>560 補足 https://ome dstu.jimdo free.com/2018/05/02/%E7%A2%BA%E7%8E%87%E9%81%8E%E7%A8%8B%E3%81%A8%E3%83%A9%E3%83%B3%E3%83%80%E3%83%A0%E3%82%A6%E3%82%A9%E3%83%BC%E3%82%AF/ 知識のサラダボウル 確率論 2018/05/02 確率過程とランダムウォーク 目次 確率過程 ランダムウォーク ランダムウォークとマルコフ性 ランダムウォーク 確率過程の簡単な例としてランダムウォークを考えましょう。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/561
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s