[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
394: 2022/09/21(水)00:34 ID:d8bCuxEf(1/14) AAS
>>393
くだらない。そのような懸念は、時枝記事にとっては全く本質的ではない。具体的に言えば、

・ R には一様分布が存在しないが、閉区間[0,1]なら一様分布が存在する。

これが大きなポイントとなる。
出題者は実数列 x を R^N 全体の中から x∈R^N として選ぶことになっているが、
時枝記事の不思議さを語るにあたって、こんなに一般的な空間 R^N から
実数列を選ぶ必要はどこにもない。すなわち、R^N を [0,1]^N に制限して、
省8
395: 2022/09/21(水)00:36 ID:d8bCuxEf(2/14) AAS
で、スレ主の>>393の懸念が解決したので、あとは>>386-387によって、スレ主は論破される。
396
(7): 2022/09/21(水)00:41 ID:d8bCuxEf(3/14) AAS
一応、具体的に書いておこう。

閉区間[0,1]上のルベーグ可測集合全体の族を F と置き、A∈F に対して
μ(A)=(Aのルベーグ測度)と定義すると、([0,1],F,μ) は確率空間になる。この確率空間は、

「閉区間 [0,1] からランダムに実数を選ぶ(一様分布)」

という操作を表現した確率空間である。次に、この確率空間 ([0,1],F,μ) の
可算無限直積 確率空間を ([0,1]^N, F_N, μ_N) と書く。この確率空間は、

「各項が0以上1以下の実数であるような実数列 x=(x_1,x_2,x_3,…)∈[0,1]^N を
省4
397: 2022/09/21(水)00:49 ID:d8bCuxEf(4/14) AAS
対応する決定番号は、d:R^N → N ではなく d:[0,1]^N → N に変更される。
これは、R^N 全体で記述していた d の定義を、[0,1]^N での定義に書き直せばいいだけなので、
難しいところは何もない。ただし、一応、定義を書いておく。

いちいち定義を書き直さなくてもいいと思うときは、以下の定義は読み飛ばして構わない。
398
(1): 2022/09/21(水)00:51 ID:d8bCuxEf(5/14) AAS
まず、2つの実数列 x=(x_1,x_2,x_3,…)∈[0,1]^N と y=(y_1,y_2,y_3,…)∈[0,1]^N に対して、

x 〜 y ⇔ ∃n_0≧1, ∀n≧n_0 s.t. x_n=y_n

として二項関係 〜 を定義する。この 〜 は、[0,1]^N 上の同値関係になる。
そこで、x∈[0,1]^N に対して

C(x):={ y∈[0,1]^N|x〜y }

と定義する。この集合 C(x) のことを、x に関する同値類と呼ぶのだった。
399
(1): 2022/09/21(水)00:53 ID:d8bCuxEf(6/14) AAS
次に、〜 に関する完全代表系を1つ取って T_0 と置く。
以下では、最後までずっとこの T_0 を使い続けることにして、

「 T_0 を後から別の完全代表系 T_1 に差し替えることは絶対にしない」

ものとする。特に注意すべき点としては、

・ T_0 そのものが回答者によって毎回ランダムに確率的に選ばれるのではない

ということを挙げておく。ここは絶対に勘違いしてはならない。
もしこうなっていたら、T_0 は毎回別の T' にランダムに差し替えられることになってしまう。
省2
400
(1): 2022/09/21(水)00:54 ID:d8bCuxEf(7/14) AAS
さて、T_0 は完全代表系なので、T_0 は以下の2つの性質を満たす。

(1) ∀x∈[0,1]^N, ∃t∈T_0 s.t. x〜t.
(2) ∀x∈[0,1]^N, ∀t_1,t_2∈T_0 s.t. [ [ x〜t_1 かつ x〜t_2 ] ⇒ t_1=t_2 ].

特に(1)から、各 x∈[0,1]^N に対して、集合 { t∈T_0|x〜t } は空ではない。
そこで、各 x∈[0,1]^N に対して、集合 { t∈T_0|x〜t } の中から好きな元を1つ選んで y とする。
よって、y∈T_0, x〜y が成り立つことになる。特に

∃n_0≧1, ∀n≧n_0 s.t. x_n=y_n
省1
401: 2022/09/21(水)00:55 ID:d8bCuxEf(8/14) AAS
よって、d(x) は x と y に依存して決まることになる。

もし { t∈T_0|x〜t } が2元以上含んでいるなら、異なる y_1,y_2∈{ t∈T_0|x〜t } を取り出せば、
x と y_1 から作った d(x) は、x と y_2 から作った d(x) とは異なる値になっている可能性があり、
d(x) の値が一意的には決まらないことなってしまう。しかし、>>の(1),(2)により、{ t∈T_0|x〜t } は一元集合なので、

y ∈ { t∈T_0|x〜t }

を満たす y はちょうど1つしかない。よって、d(x) の値は一意的に決まる。
こうして、写像 d:[0,1]^N → N が定義されて、d(x) は x の関数として一価関数である。
402: 2022/09/21(水)00:59 ID:d8bCuxEf(9/14) AAS
以上により、写像 d:[0,1]^N → N の定義が終わった。
403
(2): 2022/09/21(水)01:03 ID:d8bCuxEf(10/14) AAS
この写像 d は、確率空間 ([0,1]^N, F_N, μ_N) においては非可測な関数である。
特に、任意の正整数 k に対して、(d=k) は F_N には属さない。
従って、その確率 μ_N((d=k)) も定義できない。特に、

Σ[k=1〜∞] μ_N((d=k)) = 1 … (1)

は成り立たない。なぜなら、そもそも左辺の Σ[k=1〜∞] μ_N((d=k)) が定義できないから。
そのような「定義できない対象」が「1」とイコールなわけがないので、(1)は成り立たない。
その一方で、実は (d∈N) という集合なら可測になっている(非可測関数なら
省5
404: 2022/09/21(水)01:06 ID:d8bCuxEf(11/14) AAS
>>403の(1)と(2)を比較すると、

・ (1)の計算経路だと、左辺が定義できないので計算に失敗する。

・ (2)の計算経路だと、可測集合のみが出てくるので計算に成功し、
  しかも(2)の等式は、望みどおりの自然な等式である。

という状況になっている。これはまさに、>>386-387で説明したことに一例になっている。
つまり、うまい計算経路を選ぶ能力のないヘタクソなユーザーだけが、途中で非可測集合に出くわして
確率の計算に失敗し、「なんだよ、決定番号なんて確率論に使えねーじゃん」と文句を垂れるのである。
省3
409: 2022/09/21(水)15:10 ID:d8bCuxEf(12/14) AAS
>>406
> だから、その決定番号d1,・・d100を全て有限に選ぶことに、
> 作為が入っているってこと(ランダム性の否定)(>>375ご参照)

それは作為ではないし、ランダム性を否定しているわけでもない。
ただ単に、「わたくしスレ主は、その計算経路が気に入らない」
というお気持ち表明でしかない。つまり、スレ主は何も反論できてない。
なぜd1〜d100が有限(しかも毎回固定)で出力されてしまうのかと言えば、それは
省9
410: 2022/09/21(水)15:25 ID:d8bCuxEf(13/14) AAS
R係数の多項式環を R[x] と表記する。また、t∈R に対して、[t] をガウス記号とする。

f:(0,1] → R[x] を、f(t):= x^1+x^2+…+x^[1/t] で定義する。たとえば、

f(1) = x

f(1/3) = x+x^2+x^3

f(1/100) = x+x^2+…+x^100
省5
411: 2022/09/21(水)15:27 ID:d8bCuxEf(14/14) AAS
ところが、スレ主の屁理屈によれば、次のようになってしまう。

・ R[x] は無限次元の線形空間である。

・ 無限次元の線形空間の点を無作為に選べば、当然無限次元の点。これを多項式に戻せば、やはり無限次元である。

・ 特に、最大次数が 2022 未満であるような多項式が選ばれる確率はゼロである。

・ よって、deg f(t) < 2022 が成り立つ確率はゼロである。
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s