[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
486: 132人目の素数さん [] 2022/09/29(木) 07:32:41.51 ID:XaGDq0h2 >>474 補足 >多項式環 F[x]は、無限次元 線形空間だが、それは可能無限であって、 >形式的冪級数環R[[X]]には、多項式環 F[x]には含まれない実無限の冪級数が含まれている 多項式環の完備化が形式冪級数環 https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 多項式環 冪級数 詳細は「形式冪級数」を参照 非零の項を無限個含むことも許すという別の方向で冪指数を一般化することにより、冪級数が定義される。 形式冪級数環を N から環 R への写像全体として定義することができ、和は成分ごと、積はコーシー積で入れることができる。形式冪級数環は多項式環の完備化と見ることができる。 https://maspypy.com/category/%e5%bd%a2%e5%bc%8f%e7%9a%84%e3%81%b9%e3%81%8d%e7%b4%9a%e6%95%b0%e8%a7%a3%e8%aa%ac maspyのHP 形式的べき級数解説 https://maspypy.com/%e5%a4%9a%e9%a0%85%e5%bc%8f%e3%83%bb%e5%bd%a2%e5%bc%8f%e7%9a%84%e3%81%b9%e3%81%8d%e7%b4%9a%e6%95%b0%e6%95%b0%e3%81%88%e4%b8%8a%e3%81%92%e3%81%a8%e3%81%ae%e5%af%be%e5%bf%9c%e4%bb%98%e3%81%91 [多項式・形式的べき級数](1)数え上げとの対応付け 2021.02.01 https://maspypy.com/%E5%A4%9A%E9%A0%85%E5%BC%8F%E3%83%BB%E5%BD%A2%E5%BC%8F%E7%9A%84%E3%81%B9%E3%81%8D%E7%B4%9A%E6%95%B0%EF%BC%88%EF%BC%92%EF%BC%89%E5%BC%8F%E5%A4%89%E5%BD%A2%E3%81%AB%E3%82%88%E3%82%8B%E8%A7%A3%E6%B3%95 [多項式・形式的べき級数](2)式変形による解法の導出 2022.02.21 形式的べき級数の和・差・積 形式的べき級数の和・差・積は、交換法則・結合法則・分配法則など、演算に関する自然な要請を十分に満たすことも分かります。 (※ 専門用語で、環をなすという) (※ 多項式環から形式的べき級数環を得る操作は、「環のイデアルによる完備化」という操作の特殊な場合。重要な類似物に、 進整数環など。) 形式的べき級数環の位相 形式的べき級数 は、最低次の項が高いほど、 に近いと考えて扱います。このことを利用して、形式的べき級数の列の極限を定義することができます: つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/486
487: 132人目の素数さん [] 2022/09/29(木) 07:33:10.83 ID:XaGDq0h2 >>486 つづき https://webcache.googleusercontent.com/search?q=cache:b2GuMTVX_soJ:https://twitter.com/maspy_stars/status/1177583822197555200&cd=4&hl=ja&ct=clnk&gl=jp maspy 多項式環 k[X] → 極大イデアル(X)で完備化 → 形式的べき級数環 k[[X]] → 商体 → 形式的Laurent級数体 k((X)) Sep 27, 2019 maspy Sep 27, 2019 有理整数環 Z → 極大イデアル(p)で完備化 → p進整数環 Z_p → 商体 → p進数体 Q_p https://mathlog.info/articles/3246 Mathlog 子葉 最終更新日:07月22日(多分2022年) p進数の一般論:完備離散付値体のお話 形式的冪級数環 k[[x]] 体係数多項式環k[x]の素イデアル(x)による完備化k[[x]]を考えると k[[x]]は形式的冪級数環 定理 12 Aを完備離散付値付値環、k=A/pをその剰余体とする。このとき分数体Kとkの標数が一致すればA?k[[x]]が成り立つ。 (引用終り) 以上 https://twitter.com/5chan_nel (5ch newer account) http://rio2016.5ch.net/test/read.cgi/math/1660377072/487
489: 132人目の素数さん [] 2022/09/29(木) 21:18:33.55 ID:XaGDq0h2 >>487 補足 レーヴェンハイム?スコーレムの定理で "定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す" 多項式環において、その元の各多項式は有限次だが、 その次数はいくらでも大きくとることができる 従って、多項式環は無限次元線形空間を成す>>459 (代数学 I (第2回) 都築 暢夫 広島大) 無限次元線形空間においては、無限次元ベクトルが取れる というか、無限次元線形空間からベクトルを無作為に選べば、それは当然無限次元 無限次元ベクトル(a0,a1,・・an,・・)を多項式に翻訳すれば f(x)=a0+a1x^1+・・anx^n・・ となる この式の次数はいかなる有限次よりも大であることは明白 これは、レーヴェンハイム?スコーレムの定理の上方部分の通り、正統な結果である (参考) https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。 定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。この事実を定理の一部とする場合もある。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/489
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s