[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
642: 2022/10/10(月)07:19 ID:EBzEjr+/(1/7) AAS
>>639
>どちらか片方をランダムに選びます
>この時点では勝率は1/2以上
>ランダムに選んだ壺を開けたら目は1でした
>この時点で勝率は1/6になる
>片方の壺を開けて目を知ってしまえばいくら壺をランダムに選んでいてもその目が出た条件付き確率になってしまう
>時枝戦術も箱を開けてそれぞれの列の決定番号を知ってしまえば勝率は条件付き確率になってしまわないかな?
省21
648
(4): 2022/10/10(月)11:25 ID:EBzEjr+/(2/7) AAS
>>647
>そのためサイコロの場合と同じように論ずることはできないが、いずれにしろ問われているのは前者に相当する勝率であって、他の勝率がどうであろうと何の影響も無い。
>つまり「時枝戦略の勝率99/100以上」は完全に正しい。

笑える
宗教や政治思想になっているぞw

確率論を、コルモゴロフの確率論以前の
多分19世紀ころの厳密でないレベルで論じているww
667
(4): 2022/10/10(月)14:44 ID:EBzEjr+/(3/7) AAS
>>584
>>576 補足
(引用開始)
5)時枝の記事>>1は、ある大きな次数(自然数)mを取れば、
 m以上の項は、同値類でしっぽの共通部分に当たるから、
 代表のτ+fd(x)を見れば、問題のτ+f(x) の共通のしっぽの部分も推察がつくというものだ>>1
6)時枝記事は、99個の列を作って、それらの決定番号の最大値 Dmax99 を得て
省12
681
(10): 2022/10/10(月)16:33 ID:EBzEjr+/(4/7) AAS
>>667 補足
> 1.原理的には、これに尽きている
> 2.要するに、時枝氏の記事は、原理的に不成立
> 3.その根本は、可能無限たる多項式環のランダムに選んだ多項式の次数の大小比較の確率に依存していること

あと、多項式環は、無限次元線形空間>>189>>601
だから、形式的冪級数の空間 K[[x]] >>601のしっぽの同値類で
いま、ある形式的冪級数τを考えると>>667
省6
698: 2022/10/10(月)18:13 ID:EBzEjr+/(5/7) AAS
>>688
>開ける前は1/2以上だけど開けた時に64ドル以上なら開ける前の確率と明らかに違う

ありがとう、スレ主です
私は、あなたの考えに一理あると思っています

なお、老婆心ながら、下記
「頻度主義者とベイズ主義者の亀裂は現在でも尾を引いており、両主義の支持者の一部は互いに議論せず共通の学会に参加しないといった状況が続いている」
にご注目
省11
700
(2): 2022/10/10(月)20:12 ID:EBzEjr+/(6/7) AAS
>>699
>まさにここがポイント。時枝記事では「99/100以上」という勝率を導いたあと、総和を取ってない。

かんけーね
”時枝記事の「99/100以上」という勝率”が、根本から間違っている
総和?
ばかかw
705
(9): 2022/10/10(月)23:11 ID:EBzEjr+/(7/7) AAS
>>681 補足

もう既に書いたことだが
1)可算無限列 a0,a1,a2,・・an,・・を
 形式的冪級数τ=a0+a1x+a2x^2+・・+anx^n+・・に写して考えることができる(>>601 柳田伸太郎 名大 )
2)しっぽの同値類は、同じ同値類に属する形式的冪級数τ1,τ2で差を作ると
 f(x)=τ1-τ2 と多項式になる(等しいしっぽの項の部分が消える)
 逆に、τ1=τ2+f(x)と書ける。つまり、同じ同値類に属する形式的冪級数は、τ2と多項式f(x) の和に書ける
省13
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s