[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
721: 132人目の素数さん [sage] 2022/10/11(火) 19:01:27.72 ID:DT3AcY1E >>705 >いくらでも しっぽを小さくできて、しっぽを無限小にできるということ >>707 >「無限小」の定義がないが >>712 >形式的べき級数 は、最低次の項が高いほど、0 に近いと考えて扱います。 >>713 >上記で定義した位相から、二つの式 F1,F2 の距離を以下の式で定める >|F1-F2|=1/(k+1) >(注:k+1としたのは、定数項(0次)を扱うため) >つまり、上記の位相で、F1-F2が k次未満部分が一致して、 >はじめてk次で0で無い項がでるとき >二つの式の距離を、1/(k+1)とする なるほど http://rio2016.5ch.net/test/read.cgi/math/1660377072/721
722: 132人目の素数さん [sage] 2022/10/11(火) 19:02:54.42 ID:DT3AcY1E >>713 >原点に極を持たない超越関数τのx=0での冪級数展開に対し >τに収束する多項式のコーシー列が定義できる >|τ-fn(x)|=1/(n+1) とできる >(fn(x)は、τのx=0での冪級数展開で、第n-1項までを取った多項式で、 > τ-fn(x)は第n項から初めて0で無い項が出るとする) ここまではいいよ 問題はこの後 >この距離の定義で、τ-fn(x)のしっぽの長さを1/(n+1) とできる はい、ダメ、全然ダメ 距離=しっぽの長さ、ではありません 距離が0でない限り、しっぽの長さは全部無限です >この場合、しっぽの長さは有限だが、 >多項式環の中で、0に収束するコーシー列が定義できる しっぽの長さは有限、が嘘 距離が0でない限り、しっぽの長さは全部無限です http://rio2016.5ch.net/test/read.cgi/math/1660377072/722
723: 132人目の素数さん [sage] 2022/10/11(火) 19:04:08.50 ID:DT3AcY1E >>714 >大して努力は、していない だから誤りにいつまでも気づけない >形式的冪級数の空間 K[[x]] と >数列空間K^N は同じ線形空間と見なせる事が分かる そして、多項式の空間 K[x} と 数列空間∪K^n (n∈N) も同じ線形空間と見なせる事が分かる で、尻尾の同値類の代表元全体の空間はK^N/∪K^n (n∈N)であることもわかる。 つまりK^Nを∪K^n (n∈N)ファイバー空間としたときの切断。 ∪K^n (n∈N)全体を1とするような測度が入れられるかといえば無理 なぜなら K^0+K^1+K^2+…=1 として、 K^0,K^1,K^2,…が、全部0なら、可算加法性から総和も0 K^0,K^1,K^2,…が、あるK^n で0より大きく、 かつ、任意のnで、K^n<K^(n+1)なら、 アルキメデスの性質と可算加法性から総和が∞ したがって、決定番号がnの集合は、nが何であれ非可測 http://rio2016.5ch.net/test/read.cgi/math/1660377072/723
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s