[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
180
(3): 2022/09/09(金)02:31 ID:+snrMYVE(1/10) AAS
>>176
尊大なキミに質問

・多項式全体の空間の次元
・形式的ベキ級数全体の次元
をそれぞれ答えよ

(ヒント)両者の次元は異なる
181
(2): 2022/09/09(金)02:37 ID:+snrMYVE(2/10) AAS
>>180
線型代数における次元の定義
「線型空間の次元とは、その基底の濃度、
 すなわち基底に属するベクトルの個数である。」
外部リンク:ja.wikipedia.org
182
(1): 2022/09/09(金)02:40 ID:+snrMYVE(3/10) AAS
>>181
線型代数における基底の定義
「線型代数学における基底とは、
 線型独立なベクトルから成る集合あるいは組で、
 そのベクトルの「有限個の」線型結合として、
 与えられた線型空間の全てのベクトルを表すことができるものを言う。」
外部リンク:ja.wikipedia.org
183
(1): 2022/09/09(金)02:46 ID:+snrMYVE(4/10) AAS
>>181-182を踏まえて
>>180を考えると

{1,x,x^2,x^3,…,x^n,…}という可算無限集合は
多項式全体の空間の基底であるが
形式的ベキ級数全体の空間の基底ではない

つまり、{1,x,x^2,x^3,…,x^n,…}の
「有限個」の線型結合として表せない
省1
184: 2022/09/09(金)02:52 ID:+snrMYVE(5/10) AAS
>>183
形式的ベキ級数全体の空間の基底は存在し非可算集合である
しかしその具体的な構成は知られていない
なぜなら基底の存在は、選択公理によって導かれるからである
外部リンク:mathlandscape.com
185: 2022/09/09(金)03:04 ID:+snrMYVE(6/10) AAS
初心者(工学部の馬鹿連中を完全に包含するw)が誤解するポイント

「関数空間の基底は、線型空間としての基底とは異なる」

なぜなら関数空間の基底は、
「その線型結合で与えられた関数空間の全ての元を表すことができるもの」
であるが、「有限個の」線型結合という制限はないからである
186: 2022/09/09(金)03:05 ID:+snrMYVE(7/10) AAS
馬鹿は言葉を理解しない
定義の文章を読んでも正確に理解できない
肝心な言葉を読み落とす
そして初歩的な誤りで自爆死する
187: 2022/09/09(金)03:08 ID:+snrMYVE(8/10) AAS
「箱入り無数目」の尻尾の同値類の考えは確率とは関係ない
むしろ線型空間と関数空間の基底の考え方の違いと同じである
188: 2022/09/09(金)03:20 ID:+snrMYVE(9/10) AAS
自然数の(有限とは限らない)集合を考える

上記の集合SとS’の共通集合を除いたものがそれぞれ有限集合なら同値とする
上記の同値関係の同値類から選択公理により代表元となる集合がとれる
したがって、自然数の任意の集合Sについて、
上記の同値類の代表元との差集合(有限集合)の最大元が存在する
193: 2022/09/09(金)19:37 ID:+snrMYVE(10/10) AAS
>>189-190
中卒は、線型空間の基底の定義の文章も理解できてないだろ?

線型代数における基底の定義
「線型代数学における基底とは、
 線型独立なベクトルから成る集合あるいは組で、
 そのベクトルの「有限個の」線型結合として、
 与えられた線型空間の全てのベクトルを表すことができるものを言う。」
省8
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s