[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
153(1): 2022/09/04(日)11:30:26.97 ID:g/+6aXna(1/2) AAS
Tony Huynhは明らかに間違ってる 専門馬鹿の典型
Prussはそれにくらべれば全然マシだが、
Denisに「箱の中身は固定」といわれて沈黙
これが現実よ 中卒🐎🦌には理解できないだけw
158: 2022/09/05(月)11:58:10.97 ID:iGeoTgjc(1/3) AAS
>>157
根拠の無い言いがかりを付けることは荒らし行為です。
そのようなことをしても時枝戦略成立は覆せません。
326(2): 2022/09/18(日)21:29:55.97 ID:/maedeNP(15/19) AAS
>>316
>だから、その固定とかやって、なんで確率になるんだ?
100列のいずれかをランダムに選ぶから。
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
おまえ何一つ分かってないな。マジ諦めろ。
492(1): 2022/09/29(木)21:58:56.97 ID:Vbe/WZxQ(4/6) AAS
n_f の値は f ごとに異なるが、必ず有限値である。スレ主としては、
「確率1で n_f=+∞ (すなわち、多項式f(x)の次数は+∞)」
が成り立ってくれなければ困るのだろうが、多項式環で考えている限り、
n_f は f ごとに必ず有限値である。もちろん、a_i=0 (i≧n_f+1) と拡張すれば
f(x)=Σ[i=0〜∞] a_ix^i
として無限和の形で書くことも可能だが、その実態は a_i=0 (i≧n_f+1) なのだから、結局は
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.052s