[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
274: 132人目の素数さん [sage] 2022/09/17(土) 22:47:25.07 ID:lSTRCE/o すると、どうなるのか? スレ主によれば、時枝戦術は勝率ゼロなのだから、スレ主は毎回外れるはず。 しかし、実際は以下のようになる。 [1] スレ主は回答者なので、時枝戦術に従って100個の決定番号 d1〜d100 をまず出力することになる。 [2] 今の場合、出題が毎回 (√2,√2,√2,…) であるから、100個の決定番号d1〜d100にも全く変化がなく、 毎回必ず同じ d1〜d100 のセットが出力される。 [3] そして、スレ主は回答者なので、d1〜d100の中から1つの di をランダムに選ぶことになる。 [4] スレ主は回答者なので、選んだ di をもとにして、スレ主は何らかの箱の中身を推測することになる。 [5] この推測が失敗するのは、選んだ di が d_i > max{d_j|1≦j≦100, j≠i } を満たす場合のみ。 [6] そのような di は100個の中で高々1つしかないので、スレ主は 99/100 の確率で箱の中身を「当ててしまう」。 ポイントは [2] の部分。今の場合、毎回同じ d1〜d100 のセットが出力されるのだから、 >>272のような詭弁は全く通用しない。一例として、出力された d1〜d100 がキレイに (d1, d2, …, d100) = (1,2,3,…,100) であった場合、毎回必ず (1,2,3,…,100) という100個の決定番号が出力されることになる。 この中で、箱の中身を当てられない決定番号が例えば「39」だったとする。 スレ主は (1,2,3,…,100) の中からランダムに1つ決定番号を選ぶのだから、 ハズレである「39」という決定番号を選ぶ確率は 1/100 である。 よって、スレ主は 99/100 の確率で箱の中身を当ててしまう。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/274
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 728 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.014s