[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
834
(1): 2022/10/19(水)12:02 ID:DwfAJI7Z(2/4) AAS
>>832
慌てる乞食は貰いが少ない
835: 2022/10/19(水)12:07 ID:DwfAJI7Z(3/4) AAS
>>814 訂正

(細かいが、気づいたときに書いておく)

ヴィタリ集合 V の要素 v ∈ [0, 1]は、個々には単に区間 [0, 1]中の無理数でしかないのです
 ↓
ヴィタリ集合 V の要素 v ∈ [0, 1]は、一つの例外を除いて、個々には単に区間 [0, 1]中の無理数でしかないのです *)
(注*)一つだけ、有理数の要素が代表として取れる。)
836: 2022/10/19(水)12:58 ID:BGJQFJat(2/14) AAS
>>834
時枝記事に反論できなくて困ってるんでしょ?
世論調査による論法は>>791-796で完全に論破してしまったからね。

スレ主は次の一手を考えている最中であり、
しかし新しい屁理屈が思いつかないので困っている、という構図だな。

あるいは、時枝戦術が勝てる戦術であることを
スレ主は既に納得してしまったが、今さら手のひらを返すわけにもいかないので、
省3
837: 2022/10/19(水)13:07 ID:BGJQFJat(3/14) AAS
しかし、時枝記事における「お手つき」の記述は "世間話" のたぐいであり、
時枝戦術の本体には何の影響も与えない。
よって、その部分に文句をつけても、時枝記事の本体には何も反論できない。
また、時枝記事の中で選択公理が使われていることの意義は>>818-821で説明したとおり。

全体として、時枝記事は次のように要約できる。

・ 完全代表系があれば回答者は無敵なので、回答者が高確率で当たるのは数学的には自明。

・ 時枝記事の本当の意義は、「回答者が無敵になれること自体がパラドックスである」という部分にある。
省4
838
(2): 2022/10/19(水)18:22 ID:DwfAJI7Z(4/4) AAS
時枝不成立は、非可測ではなく、非正則分布によるってこと
それを、はっきりさせようってこと
別に困ってないよw
839
(1): 2022/10/19(水)18:49 ID:BGJQFJat(4/14) AAS
>>838
非正則分布に関するスレ主の勘違いを、世論調査を例にして説明しておこう。スレ主は、

「閉区間[a,b]上の一様分布でb→∞とした場合の非正則分布」

なるシロモノが時枝記事で使われていると発言したことがある。これは、世論調査で言えば、次のようになる。

・ 日本国民が可算無限人いたとする。それぞれの日本国民には、1,2,3,…と順番に背番号をつけることにする。

・ (☆)「あらゆる全ての100人の日本国民の組み合わせについて、その100人の中での支持率は99%以上である」
  という驚愕の事実が成り立っているとする(従って、もはや "無作為抽出" に拘っても意味がない)。
省2
840: 2022/10/19(水)18:51 ID:BGJQFJat(5/14) AAS
・ しかし、背番号が非有界だからと言って、「100人の日本国民」に質的な違いはない。

・ たとえば、「背番号1,2,…100という100人」「背番号 10^1, 10^2, 10^3, …, 10^100 という100人」の2種類を考える。

・ 1,2,…,100を全て格納できる閉区間のうち、長さが最小のものは[1,100]であり、その長さは 100−1 (=99) である。
  一方で、10^1, 10^2, …, 10^100 を全て格納できる閉区間のうち、長さが最小のものは[10^1, 10^100]であり、
  その長さは 10^100−10^1 である。

・ このように、100人の背番号を全て格納できる閉区間の長さは、後者の方が長くなっている。

・ しかし、それは背番号の話にすぎず、「100人の日本国民」としては、両者に質的な違いはない。
省2
841: 2022/10/19(水)18:52 ID:BGJQFJat(6/14) AAS
ここでスレ主は、背番号 10^1, 10^2, …, 10^100 という100人の方が
閉区間の長さが大きくなっていることを根拠にして、

「閉区間[a,b]上の一様分布でb→∞とした場合の非正則分布」

なるシロモノを持ち出しているわけだが、これこそがスレ主の勘違い。
既に述べたように、どちらの100人でも、その中での支持率を計算するときには

(支持している人数) / 100

を計算すれば終わりであり、ここに背番号の情報も閉区間の長さも登場しない。
842: 2022/10/19(水)18:54 ID:BGJQFJat(7/14) AAS
一方で、スレ主の屁理屈(非正則分布)によれば、確率の分母には閉区間の長さが登場することになる。
特に、背番号1,2,…100の場合には

(よく分からない何らかのデータ) / (100−1)

を計算することになり、背番号 10^1, 10^2, …, 10^100 の場合には

(よく分からない何らかのデータ) / (10^100 − 10^1)

を計算することになる。しかし、このような計算に何の意味があるのか?
我々は「100人の中での支持率」を計算するのではなかったのか?100人の中での支持率は
省2
843: 2022/10/19(水)18:56 ID:BGJQFJat(8/14) AAS
これは当たり前の話である。ここでの背番号は、区別のための識別番号(つまり名前)に過ぎないのだから、
背番号の情報や閉区間の長さが「100人の中での支持率の計算」に登場するわけがないのだ。
100人の中での支持率は、あくまでも (支持している人数) / 100 によって計算される。

これはどういうことかと言えば、スレ主が何かを盛大に勘違いしているということw
背番号の大きさが非有界であっても、「100人の日本国民」には質的な違いがないことを
スレ主は理解してないということ。別の言い方をすれば、質的な違いがないはずの100人について、
その背番号の大きさの違いに支離滅裂な幻想を抱き、質的な違いが生じていると勘違いしているということ。
844: 2022/10/19(水)19:09 ID:X+a0QiIr(1/4) AAS
>>838
>時枝不成立は、非可測ではなく、非正則分布によるってこと
じゃなんで非正則分布とやらを使ってるエビデンスを記事原文から引用しないの?
おまえの妄想聞いても仕方ない。数学板は妄想を語る場ではない。
845: 2022/10/19(水)19:13 ID:BGJQFJat(9/14) AAS
あるいは、次のような視点から述べることもできる。
まず、N 全体には標準的な無作為抽出は存在しない。一方で、>>839で書いたように、今回は

(☆)「あらゆる全ての100人の日本国民の組み合わせについて、その100人の中での支持率は99%以上である」

という仮定を置いている。この(☆)がある場合、N 上の如何なる "分布" も考える意味がない。
なぜなら、そのような分布に従って100人を抽出したところで、その100人の中での支持率は99%だからだ。

つまり、「無作為抽出の存在性」よりも「(☆)の成否」の方が優先順位が上なのだ。
(☆)が成り立つことが先に示せているのなら、もはや無作為抽出の存在性は論じる意味がないのである。
省1
846: 2022/10/19(水)19:21 ID:BGJQFJat(10/14) AAS
もちろん、(☆)を導出するときに「非正則分布」が使われていては いけない。念のため、確認しておこう。
(☆)を示すには、あらゆる全ての100人の日本国民の組み合わせについて、その100人の中での

(支持している人数) / 100

を計算してみればよい。これが必ず 0.99 以上になっていればよいわけだ。
ところで、(支持している人数) / 100 という計算の中には、背番号の情報も閉区間の長さも登場しない。
分母はずっと「100」のままだし、分子だって「 0 ≦ (支持している人数) ≦ 100 」を満たしている。
このように、常に「100」という固定された分母の中で計算される。スレ主が言うような
省5
847
(2): 2022/10/19(水)20:45 ID:xfu4AEGC(2/2) AAS
必死だな
時枝記事不成立は、数学的事実なので
(現代数学の確率論 可算無限個のiidの確率変数 Xi i∈N で扱えるから、時枝は詰んでいる)
そんなことをしても、無駄だよ

あとは、なぜ不成立なのに
成立しているように見えるか
その数学的謎解きだけが、残っている
省1
848: 2022/10/19(水)21:00 ID:BGJQFJat(11/14) AAS
>>847
>(現代数学の確率論 可算無限個のiidの確率変数 Xi i∈N で扱えるから、時枝は詰んでいる)

詰んでるのはスレ主。iid 確率変数 X_i を一般的に扱った設定は>>581-583にある。
その>581-583では、回答者の勝率は 99/100 以上であり、
なおかつ、スレ主は >581-583 を完全スルーして逃げ回っている。

詰んでいるとはこういうことを指す。スレ主が詰んでいるのだ。
849
(1): 2022/10/19(水)21:03 ID:X+a0QiIr(2/4) AAS
>>847
>現代数学の確率論 可算無限個のiidの確率変数 Xi i∈N で扱えるから、時枝は詰んでいる
扱えても時枝戦略では扱っていない
なぜならその戦略は勝てない戦略であり、時枝戦略は勝てる戦略だから
バカ丸出し
850: 2022/10/19(水)21:07 ID:BGJQFJat(12/14) AAS
時枝記事に反論するためのスレ主の「手駒」は非常に限られている。

・ まず、世論調査によるスレ主の論法は>>791-796によって完全に論破されてしまった。

・ 次に、スレ主お得意の「非正則分布」については、逆に世論調査の論法を用いて
 「非正則分布なんぞ使われてない」という反撃が>>839-846に書かれてしまった。
  これにはスレ主も納得せざるを得ないので、スレ主にとっては手痛い。

・ 残った手駒は「 iid 確率変数 X_i 」であるが、その設定は>>581-583で既に扱っていて、
  回答者の勝率は 99/100 以上である。そして、スレ主は>581-583を完全スルーしている。
省3
851: 2022/10/19(水)21:08 ID:BGJQFJat(13/14) AAS
ちなみに、スレ主が iid 確率変数 X_i に拘る理由は

「出題がランダムなら、回答者には何のヒントもないのだから、回答者が当たるわけがない」

という直観に基づいている。では、出題を固定した場合には、回答者には どんなヒントが提供されるのか?
いや、何のヒントも提供されない。回答者から見れば、「どんな出題を固定したのか分からない。ヒントがない」
としか映らないからだ。よって、スレ主は

「出題を "固定" したって、回答者には何のヒントもないのだから、回答者が当たるわけがない」

という立場を取らなければダブルスタンダードである。
省3
852: 2022/10/19(水)21:27 ID:BGJQFJat(14/14) AAS
>現代数学の確率論 可算無限個のiidの確率変数 Xi i∈N で扱えるから、時枝は詰んでいる

おバカのスレ主のために、ここも世論調査で説明してやろう。まず、時枝記事では

(☆)「あらゆる全ての100人の日本国民の組み合わせについて、その100人の中での支持率は99%以上である」

という驚愕の事実が導出されている。正確に書けば、

(★) ∀ s∈[0,1]^N s.t. その出題 s に対する回答者の勝率は 99/100 以上
省9
853
(2): 2022/10/19(水)21:29 ID:A9hrzJ1c(1) AAS
>>849
iidを採用するのは出題者側でしょ
時枝戦略は回答者側の戦略じゃないの?
854: 2022/10/19(水)21:45 ID:X+a0QiIr(3/4) AAS
>>853
>iidを採用するのは出題者側でしょ
Xiは実数列ではない
もう馬鹿過ぎて手が付けられない
855
(1): 2022/10/19(水)21:47 ID:X+a0QiIr(4/4) AAS
箱の中には実数しか入れられない
いかなる実数も定数
中卒馬鹿に数学は無理
856
(1): 2022/10/20(木)07:41 ID:0CBm2hkn(1/4) AAS
>>853
>iidを採用するのは出題者側でしょ
>時枝戦略は回答者側の戦略じゃないの?

ありがと
だが、”iidを採用するのは出題者側”ではない
時枝のような確率を扱うときに(例えば、箱に一様にサイコロの目を入れる様なとき)
採用する現代確率論の手法が、iidですよ(現代確率論の教科書を読んでね)
857
(3): 2022/10/20(木)07:47 ID:0CBm2hkn(2/4) AAS
>>855
>箱の中には実数しか入れられない

時枝記事の箱の可算無限数列>>1を、形式的冪級数環の要素と見る立場で説明できる>>576
形式的冪級数環の係数は、複素数に拡張できる
従って、箱に複素数を入れても、全く同様の議論は可能ですw
858
(6): 2022/10/20(木)08:01 ID:0CBm2hkn(3/4) AAS
>>857
>形式的冪級数環の係数は、複素数に拡張できる

いや、任意の環に拡張できる
4元数でも8元数にでも
16元数もあったかな?

本来は、
コイントス→サイコロの目→実数→複素数→多元数
省4
859
(1): 2022/10/20(木)11:01 ID:4oX3YJho(1/2) AAS
>>858
>箱に入れる数に対する依存性が消失している
 それはその通り
 しかし、それが正しいのだから
 あなたには反駁できない
>これが、時枝記事のデタラメさの傍証ですよ
 あなたは100人がそれぞれ異なる100列を選んで
省4
860: 2022/10/20(木)11:05 ID:4oX3YJho(2/2) AAS
>>859
箱入り無数目は
箱に入る候補の集合の濃度が2以上なら
必ず成り立つ
861: 2022/10/20(木)11:19 ID:0vqwNnbB(1/11) AAS
>>858
それはパラドックスとしての不思議さを感情面で訴えているだけであって、
傍証にすらなってない。バナッハ・タルスキーのパラドックスで言えば、

「球を同じ半径の球2つに分割するよりも、3つ、4つ、5つ、…と多くの個数に
 分割する方がより困難なはずだが、それも同様にできてしまう。
 これが、バナッハ・タルスキーのパラドックスのデタラメさの傍証である」

と主張しているようなもの。単なる感想文にすぎない。
862: 2022/10/20(木)11:26 ID:0vqwNnbB(2/11) AAS
>>858
>その困難さが切断されて、
>箱に入れる数に対する依存性が消失している
>これが、時枝記事のデタラメさの傍証ですよw

スレ主は「選択公理は時枝記事にとって本質的ではない」と発言したことがあるが、全く同様に、

「コイントス→サイコロの目→実数→複素数→多元数という係数の拡張は、時枝記事にとって本質的ではない」

のである。なぜなら、100個の決定番号こそが「大きなヒント」として機能するからだ。
省9
863: 2022/10/20(木)11:30 ID:0vqwNnbB(3/11) AAS
一方で、時枝記事の場合は、出題者が回答者に100個の決定番号を渡してくれるわけではないので、
回答者が自前で100個の決定番号を所持していなければならない。
それも、100個の決定番号を「1組」所持しているだけでは意味がない。
あらゆる出題に対応できるように、必要な100個の決定番号の組は全て所持していなければならない。
そんな芸当を可能にするのが完全代表系である。完全代表系を手にした回答者は、晴れて

(☆)「どんな出題が来ても、その出題に対する大きなヒント(=100個の決定番号)を既に所持している」

という "無敵の状態" になったので、回答者の勝率は 99/100 以上になる。このように考えると、
省6
864: 2022/10/20(木)11:38 ID:0vqwNnbB(4/11) AAS
スレ主は「箱に入れる数に対する依存性が消失している」と述べているが、
これは確率版に限った話ではなく、「100人の回答者」バージョンでも同じこと。

・ 背番号1から背番号100までの回答者を用意する。
・ 背番号 k の回答者は、番号kに対する時枝戦術を実行する。
・ この場合、100人の回答者のうち少なくとも99人は何らかの箱の中身を当てる。

このように、100人版でも必ず99人以上が当たってしまうのだから、箱に入れる数に対する依存性が消失している。
しかも、係数を複素数や多元数に拡張しても同しで、やはり100人のうち99人以上は当たってしまう。
省3
865: 2022/10/20(木)11:48 ID:0vqwNnbB(5/11) AAS
そして、100人版だろうが確率版だろうが、結局は「選択公理が人知を超えて無敵すぎる」のが
パラドックスの根源なのであって、要するにスレ主は

「選択公理はインチキだ」

と言っているのである。時枝記事に反論しているつもりが、
本質的には選択公理に反論しているのがスレ主なのである。

スレ主はそろそろ数学から引退すべきだなw
「時枝記事のタネ明かし」とやらも全く披露してくれないしな。何を勿体ぶってるんだろうね。
省2
866: 2022/10/20(木)12:34 ID:fszNwzQa(1/5) AAS
>>856
>採用する現代確率論の手法が、iidですよ(現代確率論の教科書を読んでね)
現代確率論の手法?べつに手法の一つとして存在するぶんには構わんが、勝てないから無意味なだけ。
一方、時枝戦略なら確実に99/100以上の勝率で勝てる。
問われてるのは勝つ戦略があるかなので勝てない戦略を論じても無意味。中卒バカの存在と同様。
867: 2022/10/20(木)12:40 ID:fszNwzQa(2/5) AAS
>>857
アホ
形式的べき級数はとりあえず忘れろ 無意味過ぎ

実数とか複素数とかを言ってるのではない
出題者の出題の仕方に反例は無いということを言ってる
868: 2022/10/20(木)12:44 ID:fszNwzQa(3/5) AAS
>>858
なんの傍証にもなってない
傍証はいいから記事原文のどこがどう間違ってるのかズバリ示せ
できないなら妄想に過ぎない おまえの妄想聞いても仕方ない 数学板は妄想を語る場ではない
869
(6): 2022/10/20(木)18:05 ID:T5rDkYGh(1/2) AAS
>>857-858 補足

1)時枝氏の記事の原理は、>>1
 可算無限の数列のしっぽの同値類で
 問題の数列と、代表の数列との比較で、
 ある(箱の)番号から、先のしっぽが一致する決定番号なるものを用いるもの
2)つまり、決定番号dが何らかの手段で分かれば
 代表の数列は既知だから、
省27
870
(1): 2022/10/20(木)18:12 ID:T5rDkYGh(2/2) AAS
>>869 リンク訂正(2ヶ所)

 決定番号dは、非正則分布>>51を成すから、上記の手段は”原理的に無い”のです!>>75
  ↓
 決定番号dは、非正則分布>>51を成すから、上記の手段は”原理的に無い”のです!>>705

 決定番号dは、非正則分布を成すから、上記の手段は原理的に不成立!>>75
  ↓
 決定番号dは、非正則分布を成すから、上記の手段は原理的に不成立!>>705
871: 2022/10/20(木)18:37 ID:fszNwzQa(4/5) AAS
>>869
>決定番号dは、非正則分布>>51を成すから、上記の手段は”原理的に無い”のです!>>75
はい、大間違い。
100列の決定番号の組 (d1,d2,...,d100) は定数。
時枝戦略の確率変数は列インデックスkであり、kが従う確率分布は{1,2,...,100}上の一様分布。

記事原文からこれが読み取れないようなら国語からやり直した方がいい。
872: 2022/10/20(木)18:43 ID:fszNwzQa(5/5) AAS
>>869
>そして、「d<d'の確率が1/2だ」と叫ぶw>>1
そんなことは一言も言っていない。
「d,d'のいずれかをランダムに選択した方をa、他方をa'としたとき、a≦a'の確率が1/2以上だ」と言っている
ランダム選択という手順が無ければ確率1/2は言えない。
馬鹿丸出し。
873: 2022/10/20(木)20:23 ID:0vqwNnbB(6/11) AAS
>>869
> 3)問題は、”決定番号dか、あるいはd以上の数を得る何らかの手段があるか無いか”であり
> 決定番号dは、非正則分布>>51を成すから、上記の手段は”原理的に無い”のです!>>75

ここが間違っている。決定番号 d:[0,1]^N → N は非可測関数であるが、
それにも関わらず、「d以上の数を得る手段」は存在している。

具体的にはどうすればいいのか?まず、出題者は s∈[0,1]^N を出題する。
ここから出力される100個の決定番号を d1,d2,…,d100 とする。1≦i≦100 なる i の中で
省9
874: 2022/10/20(木)20:29 ID:INDi1LEb(1) AAS
>>833
>数え上げ測度では
>ヴィタリ集合V(非可算)は、その元を1と数えて、
>∞に発散する測度が定義できるかも

かも、は要らん
論理がわかれば誰でもわかる
分からん中卒は論理が分からんエテ公(嘲)
省3
875
(1): 2022/10/20(木)20:34 ID:0vqwNnbB(7/11) AAS
>>869
> 3)問題は、”決定番号dか、あるいはd以上の数を得る何らかの手段があるか無いか”であり
> 決定番号dは、非正則分布>>51を成すから、上記の手段は”原理的に無い”のです!>>75

あるいは、100人の回答者バージョンを考えれば、より簡単である。

・ 背番号1から背番号100までの回答者を用意する。
・ 背番号 k の回答者は、番号kに対する時枝戦術を実行する。
・ この場合、100人の回答者のうち少なくとも99人は何らかの箱の中身を当てる。
省11
876: 2022/10/20(木)20:52 ID:0vqwNnbB(8/11) AAS
あるいは、スレ主は

「予め1つに固定された d に対して、回答者が高確率で d 以上の数を得られるような手段は無い
 (なぜなら N 全体は非有界であり、[1,d] に比べて (d,+∞) の方が遥かに広大だから)」

と主張しているのかもしれない。し・か・し、その主張は時枝記事とは無関係。
このことは、>>875を見れば一目瞭然である。

・ 100人の中で少なくとも99人は、その人の背番号を i とするとき、「 di 以上の数を得ている」

ご覧のとおり、背番号 i の回答者が目指すべきなのは di 以上の数を得ることなのであって、
省12
877
(4): 2022/10/20(木)23:02 ID:0CBm2hkn(4/4) AAS
>>869-870 補足
(引用開始)
2)つまり、決定番号dが何らかの手段で分かれば
 代表の数列は既知だから、
 問題の数列のd+1以降のしっぽの数列(共通部分)を知って、
 問題の数列の属する同値類を知り、代表の数列を知り
 d番目の箱の数は共通だから、
省29
878: 2022/10/20(木)23:25 ID:0vqwNnbB(9/11) AAS
>>877
>明らかに、二つの有限の値 n1,n2 は、非正則な分布を代表していない!のです

非正則分布は確率論の公理から外れたデタラメなので、n1,n2 が非正則分布を代表していないことは、
むしろ「確率論として健全な議論をしている」ことの証拠であるw

逆に、非正則分布を代表するような議論が時枝記事の中に現れたならば、
それこそが時枝記事の「間違い」である。一方でスレ主は、

「時枝記事では、非正則分布を代表していない n1,n2 を用いた議論を行っている」
省4
879: 2022/10/20(木)23:33 ID:0vqwNnbB(10/11) AAS
何度も繰り返すが、時枝記事では非正則分布は使われていない。
時枝記事で示されていることは、世論調査で言えば

(☆)「あらゆる全ての100人の日本国民の組み合わせについて、その100人の中での支持率は99%以上である」

ということ。この(☆)を示すのに、非正則分布は使われていない。このことは>>839-846で指摘済み。
簡単におさらいすると、(☆)を示すのには、あらゆる全ての100人の組み合わせについて、その100人の中での
(支持している人数) / 100 を計算してみればよい。これが必ず 0.99 以上になっていればよい。

ところで、(支持している人数) / 100 という計算の中には、背番号の情報も「閉区間の長さ」も登場しない。
省8
880: 2022/10/20(木)23:55 ID:0vqwNnbB(11/11) AAS
>>877
> 決定番号dは、非正則分布>>51を成すから、上記の手段は”原理的に無い”のです!>>705

これ、一応指摘しておくけど、写像 d:[0,1]^N → N は非正則分布を成すのではなくて、
ただ単にルベーグ非可測であるだけ。そして、ルベーグ非可測であることは、
非正則分布を成すこととは無関係。そもそも、分布とは人間が勝手に設定するものであって、

「写像を定義した瞬間に何らかの唯一無二の分布が勝手に付属する」

ようなものではない。つまり、スレ主が言うところの「写像 d は非正則分布を成す」とは、
省5
881
(1): 2022/10/21(金)00:36 ID:/4AMHDZp(1/16) AAS
おバカのスレ主のために、まとめておこう。

・ N には非正則分布の構造を人間が勝手に定義することができる。

・ しかし、勝手に定義できるからといって、時枝記事でその構造が使われているとは限らない。
  非正則分布が使われていることを示すには、非正則分布の構造を代表した議論が記事の中に存在しなければならない。

・ しかし、時枝記事では「全ての100人の日本国民の組み合わせについて、その100人の中での支持率は99%以上である」
  という内容を導出しているのみ。しかも、そこで必要な計算は (支持している人数) / 100 だけ。

・ これでは非正則分布の構造を代表していない。スレ主に言わせれば、
省6
882: 2022/10/21(金)00:52 ID:dBYBl8GO(1/37) AAS
>>877
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にnを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる. 」
⇒この時点で出題列は固定される
 すなわち100列も固定される
 すなわち100列の決定番号の組(d1,d2,...,d100)も固定される
省6
883
(2): 2022/10/21(金)01:49 ID:ppRukeKx(1/15) AAS
決定番号の分布って完全代表系が決まってたら出題者がどんな実数を箱に隠すかで決まる
箱の中の実数達をたとえば[0,1]の実数区間の独立な一様分布にしてやれば決定番号は非正則分布になる
884
(1): 2022/10/21(金)01:56 ID:dBYBl8GO(2/37) AAS
>>883
>決定番号の分布って
決定番号が定数でないと?
国語からやり直し
885
(3): 2022/10/21(金)07:49 ID:JJUDruWB(1) AAS
>>877 補足
(引用開始)
a)簡単に補足しよう。いま、簡便に>>51の例示通り
 非正則な分布:一様分布の範囲を無限に広げた分布
 と考えよう
 つまり、まさに自然数N n∈N で、∀n の重み付けを1 とした分布だ
b)この場合、明らかに、この非正則な分布において
省19
886
(1): 2022/10/21(金)08:57 ID:ppRukeKx(2/15) AAS
>>884
その定数が決まるまでの過程の話
887
(1): 2022/10/21(金)09:10 ID:dBYBl8GO(3/37) AAS
>>886
>その定数が決まるまでの過程の話
その定数が決まってから回答者のターンとなる
つまり回答者にとっては最初から定数
国語からやり直し
888: 2022/10/21(金)09:13 ID:dBYBl8GO(4/37) AAS
>>885
>これは、上記a)の非正則な分布 自然数N n∈N で、∀n の重み付けを1 とした分布 から見るとヘン
決定番号は定数
ヘンなのは非正則分布に従って選出されると考えるおまえの頭
889
(2): 2022/10/21(金)09:21 ID:ppRukeKx(3/15) AAS
>>887
出題者にとっては最初から定数なんてことはない
出題者が何を箱に入れるかで決まる
出題者が確率に任せることにしたらその確率によって定まる
890
(1): 2022/10/21(金)11:37 ID:dBYBl8GO(5/37) AAS
>>889
>出題者にとっては最初から定数なんてことはない
ナンセンス
問われているのは「回答者の戦略として勝てるものが存在するか」なので回答者から見て定数であることが全て
数学以前 国語からやり直し
891: 2022/10/21(金)11:40 ID:dBYBl8GO(6/37) AAS
>>889
>出題者が確率に任せることにしたらその確率によって定まる
出題者が確率的に定めようと他のどんな手段で定めようと、いったん定めたら定数。
その後に回答者のターンになるので、回答者にとっては定数。
問われているのは回答者の戦略。

数学以前 国語からやり直し
892: 2022/10/21(金)11:41 ID:/4AMHDZp(2/16) AAS
>>885
まさしく、>>881で指摘した間違いをそのまま再現している。問題外である。
おそらく、スレ主は>>881を読んでないのだろう。

>つまり、まさに自然数N n∈N で、∀n の重み付けを1 とした分布だ

N上にそのような非正則分布を人間が勝手に定義することは可能である。
しかし、その非正則分布が時枝記事で使われているとは限らない。
非正則分布が使われていることを示すには、非正則分布の構造を代表した議論が記事の中に存在しなければならない。
省11
893: 2022/10/21(金)11:48 ID:dBYBl8GO(7/37) AAS
逆に、決定番号が何らかの確率分布に従って選出されるのはどのような問題か?
回答者が回答を決めた後に出題者が出題列を定めるような問題である
この場合回答者が勝つ戦略が存在しないのは自明
894: 2022/10/21(金)12:03 ID:/4AMHDZp(3/16) AAS
>>885
>同様に、時枝の決定番号 d1,・・,d100 では、平均値 (d1+・・+d100)/100 で有限になる
>これは、上記a)の非正則な分布 自然数N n∈N で、∀n の重み付けを1 とした分布 から見るとヘン

おバカなスレ主のために、簡単な具体例を1つ出そう。

・ ここに1枚の封筒があり、確率 1/2^k で k ドル入っているとする(k≧1)。
・ 特に、封筒の中身はどんな N の値も取りうる。
・ よって、N 上の非正則分布から見たときには、封筒の中身の平均値は発散して∞になっているはず。
省10
895
(1): 2022/10/21(金)12:11 ID:/4AMHDZp(4/16) AAS
これはスレ主のレスではないが、返答しておく。

>>883
>箱の中の実数達をたとえば[0,1]の実数区間の独立な一様分布にしてやれば決定番号は非正則分布になる

間違っている。非正則分布とは、∫_R p(t)dt ≠ 1 が成り立つような可測関数 p(t) のことを指す。
出題者が一様分布に従って出題を選んでも、そこから決まる決定番号の "分布" はルベーグ非可測なので、
非正則分布にすらならない。

非正則分布は確率論的にはデタラメであるが、それでも用途はある。
省8
896
(2): 2022/10/21(金)13:45 ID:ppRukeKx(4/15) AAS
>>890
回答者の戦略は時枝戦略で決まってるのだから回答者は実は不要
後は出題者がどのように箱の中に実数を隠せばどうなるかを調べるだけ
897: 2022/10/21(金)13:51 ID:/4AMHDZp(5/16) AAS
>>896
回答者をロボットと考えて出題者の一人遊びだと解釈する視点は>>660-662で説明済み。
この場合の「勝率 99/100」とは、

「ロボットを相手に一人遊びをしている出題者がどんな実数列 s_0 を厳選しても、
 出題者がその s_0 を毎回出題したときの、出題者の勝率は 1/100 以下である」

という意味。まあ分かってるとは思うが。
898
(3): 2022/10/21(金)14:03 ID:ppRukeKx(5/15) AAS
>>895
非可測関数が使い道がないにせよある箱の中身の決定方法によって決定番号がそのように決まるということはその先はふつうとは違うことを意味してないかな?たとえばこの問題はそのように箱の中を設定できるので問題として無効であるとか
899
(1): 2022/10/21(金)14:09 ID:/4AMHDZp(6/16) AAS
>>898
>たとえばこの問題はそのように箱の中を設定できるので問題として無効であるとか

非可測な事象をわざと出現させるような設定は実際に可能である。
その場合、「その設定では確率が計算できない」という当たり前の結論になるだけ。
一方で、時枝記事ではそのような設定を採用していない。時枝記事では

「ロボットを相手に一人遊びをしている出題者がどんな実数列 s_0 を厳選しても、
 出題者がその s_0 を毎回出題したときの、出題者の勝率は 1/100 以下である」
省1
900
(6): 2022/10/21(金)14:17 ID:/4AMHDZp(7/16) AAS
>>898
>たとえばこの問題はそのように箱の中を設定できるので問題として無効であるとか

あるいは、次のようにも言える。選択公理が登場しない「ごく普通の確率的ゲーム」であっても、
出題者がわざと非可測な方法で出題を行えば、その後の事象は非可測になってしまうので、確率が計算できない。
しかし、このことを以って「この問題はそのように設定できるので問題として無効である」と言ってみたところで、
それはナンセンス。つまり、「ごく普通の確率的ゲーム」の場合には、
その確率が可測な方法で導出できるような設定のみが(暗黙のうちに)対象になっている。
省4
901
(1): 2022/10/21(金)14:23 ID:ppRukeKx(6/15) AAS
>>900
ということは箱入り無数目は箱の中の実数を決定番号が非可測になるように設定すると回答不能ってことでいい?
902
(1): 2022/10/21(金)14:27 ID:/4AMHDZp(8/16) AAS
>>901
写像 d は最初から非可測関数である。しかし、出題者が出題を固定すれば可測な事象しか登場しない。従って、

「決定番号が非可測になるように設定すると回答不能」

という言い方は正しくない。

「非可測な事象が登場して確率計算が続行不能になるような設定のもとでは回答不能だ」

という言い方なら正しい。しかし、この言い方はそもそもナンセンス。正しいことを言っているがナンセンス。
その理由は>>900で説明したとおり。確率的ゲームの設定とは、その確率が可測な方法で導出できるような設定のみを
省1
903
(2): 2022/10/21(金)14:34 ID:ppRukeKx(7/15) AAS
>>902
箱の中の実数の決め方自体は確率的方法に沿ってる
非可測をもたらしてるのは尻尾同値類の決定番号を求める過程
つまり時枝戦略を採用しなければ非可測にはならなかった
ただし時枝戦略ではないので99/100では勝てない
904
(1): 2022/10/21(金)14:41 ID:/4AMHDZp(9/16) AAS
>>903
確率的方法には様々な種類がある。一様分布に従ってランダムに選ぶという方法もあれば、
ただ1つの s_0 のみを出題するという方法もある(この場合、s_0 が確率1で選ばれるという確率的方法になる)。

時枝記事では後者を採用している。ただ1つの s_0 のみが毎回出題される。
この場合、可測な事象しか登場せず、回答者の勝率は 99/100 以上になる。
しかも、s_0 にはそれ以上の制限がない。つまり、時枝記事では

∀s∈[0,1]^N s.t. 出題者が毎回 s を出題するとき、回答者の勝率は 99/100 以上である
省5
905
(2): 2022/10/21(金)14:49 ID:ppRukeKx(8/15) AAS
>>904
必ず時枝戦略を採用すべしって制限はないのだから時枝戦略を採用しなければたいてい非可測にはならない
元の問題は勝つ戦略はあるかなんだから
906: 2022/10/21(金)14:49 ID:3OMYDiSB(1/51) AAS
箱の中身を確率変数とすれば、当然、列から決定番号への関数は非可測だが
だからといって、100人がそれぞれ異なる100列を選んで、
それが100列とも決定番号が単独最大値になって外れる
といった馬鹿なことは絶対に起きえない

つまり、どの列も当たる確率が同じ99/100になる、と云えないだけで
もしある列の当たる確率が0なら、その他の列の当たる確率は必然的に1になる
つまり100列の当たる確率が存在するなら、その総和は99以上である
907
(6): 2022/10/21(金)14:54 ID:/4AMHDZp(10/16) AAS
>>905
>必ず時枝戦略を採用すべしって制限はないのだから時枝戦略を採用しなければたいてい非可測にはならない
>元の問題は勝つ戦略はあるかなんだから

なるほど、君はそういう立場なのか。だったら、時枝記事の設定を少し変更してみても、君は文句を言うまい。
具体的には、次のように変更してみよう。

(1) 出題者は実数列 s∈[0,1]^N を一様分布に従ってランダムに選ぶ。
(2) 回答者は、i=(i_1,i_2,…)∈{1,2,…,100}^N を {1,2,…,100}^N 上の一様分布に従ってランダムに選ぶ。
省11
908
(5): 2022/10/21(金)14:55 ID:/4AMHDZp(11/16) AAS
なお、「1回でも箱の中身の推測に成功していたら回答者の勝利とする」という条件は、
回答者に有利すぎると感じるかもしれない。この場合、次のような設定も可能である。

・ i_1 〜 i_n まで終了した時点での成功回数を S_n と置いたとき、
  liminf[n→∞] S_n/n ≧ 99/100 が成り立っていたら回答者の勝率とする。

このように勝利条件を変更しても、回答者が勝利するという事象は正式に可測になり、
回答者の勝率は 99/100 以上になる。
909
(2): 2022/10/21(金)14:57 ID:ppRukeKx(9/15) AAS
>>907
その箱入り無数目改なら時枝戦略は99/100で勝てる
元の箱入り無数目は時枝戦略でほんとに勝てるかどうか不明な場合がある
910
(1): 2022/10/21(金)15:11 ID:/4AMHDZp(12/16) AAS
>>909
>元の箱入り無数目は時枝戦略でほんとに勝てるかどうか不明な場合がある

それも微妙に見解が間違っている。もともとの時枝記事では

∀s∈[0,1]^N s.t. 出題者が毎回 s を出題するとき、回答者の勝率は 99/100 以上である

が示されている。これは正しい。一方で、君が言っているのは

「 s を一様分布に従ってランダムに出題したら回答不能だ(非可測な事象が出現して確率が計算できないので)」
省5
911
(1): 2022/10/21(金)15:16 ID:3OMYDiSB(2/51) AAS
>>907-908
なんかめんどくさいな
単に同じ人が二回チャレンジしないといえばいいだけ
同じ問題を不特定多数の人が一回づつチャレンジする

その場合、当然100列のそれぞれを選ぶ人はほぼ同数になる
外れは1列しかありえないのだから、確率は99/100になる
そういうこと 証明を読めばそういう解釈で計算しているとわかる
省1
912: 2022/10/21(金)15:32 ID:/4AMHDZp(13/16) AAS
>>911
別にそれでもいいが、正式に確率空間として記述したときに、対応が分かりやすいような書き方をしたつもり。
あと、自分でも書いてて混乱してしまったが、>>907の設定では

「1回でも箱の中身の推測に成功していたら回答者の勝利」

が勝利条件なので、回答者が勝利する確率は「 1 」になる。つまり、

・ 確率 1 で「少なくとも1回は箱の中身の推測に成功する」

ということ。>>908の場合はどうかというと、これもまた、回答者が勝利する確率は「 1 」になる。つまり、
省4
913
(2): 2022/10/21(金)15:56 ID:ppRukeKx(10/15) AAS
>>910
不満は箱入り無数目の問題が何の疑問もなく時枝戦略で勝てるのが不満
多少はケチがつかないとなんでも入れていい箱の中の実数が当たるのは不自然
914: 2022/10/21(金)16:14 ID:/4AMHDZp(14/16) AAS
>>913
>多少はケチがつかないとなんでも入れていい箱の中の実数が当たるのは不自然

箱の中身の実数が当たってしまうのは、選択公理が原因。バナッハ・タルスキーのパラドックスと構図は同じ。
1つの球が、それと同じ半径の2つの球に分解できるなんて、こんなに不自然なことはない。
しかし、そんな不自然なことが数学的に正しく証明されている。時枝記事も同じこと。時枝記事では

∀s∈[0,1]^N s.t. 出題者が毎回 s を出題するとき、回答者の勝率は 99/100 以上である

が示されている。これは数学的に正しいので、君はケチをつけられない。一方で、君が言っているのは
省6
1-
あと 88 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s