[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
669(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:08 ID:2yNZ8A8t(7/13) AAS
>>668
つづき
生成ランク
単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。
これはPID上の有限生成加群の構造定理の結果である。
その基本的な形は、PID 上の有限生成加群はねじれ加群と自由加群の直和であるというものである。
しかしそれは直接次のようにも示せる。
省10
670(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:08 ID:2yNZ8A8t(8/13) AAS
>>669
つづき
用語について
「局所化」の名の起源は代数幾何学にある。R はある幾何学的対象(代数多様体)の上で定義された函数環とする。この多様体を点 p の近傍で「局所的に」調べようとするならば、p の近傍で 0 でないような函数全体の成す集合 S を考えることになる。その意味で、R を S に関して局所化して得られる環 S?1R は p の近傍における V の挙動についての情報のみをふくんでいる(局所環も参照)。
数論および代数的位相幾何学において、数 n「における」環や空間とか、n から「遠い」などという言及をすることがある。「n から遠い」("away from n") の意味は、「その環の中で n が可逆」(従って、Z[1/n]-代数になる)ということである。例えば、体については「素数 p から遠い」と言えば「その体の標数は p と異なる」という意味になる。Z[1/2] は「2 から遠い」が F2 や Z はそうではない。
形式的な構成
単元の積はふたたび単元であり、環準同型は積を保つことから、局所化に用いる S は R の乗法モノイドの部分モノイドであることが求められる。すなわち、S は 1 を含み、s, t が S の元ならば st もやはり S に含まれる。環 R のこのような性質を持つ部分集合を乗法的集合(乗法系)あるいは積閉集合(乗法的閉集合)と呼ぶ。
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.046s