[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
664
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)11:23 ID:2yNZ8A8t(2/13) AAS
>>659
>参考になるな。自由は"free "の訳語だが、"free "には、ただ(只)とか、ある性質が存在しないときにも使う
>”ねじれ”が、"free "なのかもね

下記も、ご参考
"free "は、日本語の”自由”よりも、意味の範囲が広いんだね

外部リンク:en.wikipedia.org
Free object
省4
665
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:03 ID:2yNZ8A8t(3/13) AAS
>>664
「捩れ (代数学)」
”環上の加群の場合は、環のある正則元によって零化される加群の元を言う。”
”環 R 上の加群 M は、t(M) = M であるとき、捩れ加群 (torsion module) と呼ばれ、t(M) = 0 であるとき、捩れがない (torsion-free) と言う。”
”加群に対して
・M を任意の環 R 上の自由加群とすると、定義より直ちに、M は捩れがないことが分かる。特に、任意の自由アーベル群は捩れを持たず、体 K 上のベクトル空間は K 上の加群と見たとき、捩れがない。
・有限次元ベクトル空間 V に作用する線型作用素 L を考える。V を自然な方法で F[L]-加群と見ると、(多くのことの結果として、単純に有限次元性から、あるいはケイリー・ハミルトンの定理によって)V は捩れ F[L] 加群である。”
省8
673
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:59 ID:2yNZ8A8t(11/13) AAS
>>664 追加

ベクトル空間、体、基底 について
この関係は、あまり詳しく書いてないですね

(参考)
外部リンク:ja.wikipedia.org
ベクトル空間

線型代数学におけるベクトル空間(ベクトルくうかん、英: vector space)、または、線型空間(せんけいくうかん、英: linear space)は、ベクトル(英: vector)と呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(スカラー乗法)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。
省9
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.316s*