[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
526(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/21(金)23:41 ID:WrfyH/cJ(20/22) AAS
AA省
530: 2020/08/22(土)06:59 ID:es3Bwx6Y(1/27) AAS
>>526
>(>>482)
>「逆に、行列環 Mn(R) から、零因子を除けば、即ち斜体になる」
>は、撤回しておくよ
◆yH25M02vWFhPって、恥を感じないサイコパスなんだな
フルチンで外で歩いて、女子から「キャー!変態!」といわれても
「ああ、服着てなかったね。じゃ”次”からは服着るよ」(ニコニコ)
省5
534(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/22(土)07:59 ID:qg6YAvVW(1/27) AAS
>>526 補足
もう一度、零因子と逆元との関係を纏めておこう
まず、実数Rを成分とするn×n正則行列全体の成す一般線形群GLn(R)については、下記ご参照
1.n×n行列全体の成す行列環 Mn(R) で、ここには0(零行列)と零因子が含まれている
2.Mn(R) から 0(零行列)と零因子を除けば、n×n正則行列全体の成す一般線形群GLn(R)になる
3.行列環 Mn(R) においては、零因子か(逆元を持つ)正則行列かは、その行列式で分けられる
即ち、行列A∈Mn(R)で、行列式|A|=0なら零因子、行列式|A|≠0なら正則行列となる
省10
614(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/23(日)09:03 ID:ehdjUjVy(1/16) AAS
>>526 補足
>よってこれ(>>482)「逆に、行列環 Mn(R) から、零因子を除けば、即ち斜体になる」
>は、撤回しておくよ
行列環 Mn(R)で、零因子を含むヤコブソン根基(>>604)J(Mn(R)を作って
商環 Mn(R)/J(Mn(R)) 作れば J(Mn(R)/J(Mn(R))) = {0} が言えて(>>605)
零因子を含まない環が、できるのか
(参考)
省10
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s