[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
477(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/21(金)07:48 ID:WrfyH/cJ(11/22) AAS
>>476
つづき
主イデアル環
詳細は「主イデアル整域」および「主イデアル環」を参照
環は整数全体とよく似た構造を示す代数系だが、一般の環を考えたのではその環論的性質は必ずしも近いものとはならない。整数に近い性質を持つ環として、環の任意のイデアルが単独の元で生成されるという性質を持つもの、すなわち主イデアル環を考えよう。
環 R が右主イデアル環 (PIR) であるとは、R の任意の右イデアルが
aR={ar | r∈ R }
省3
478: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/21(金)07:49 ID:WrfyH/cJ(12/22) AAS
>>477
つづき
非可換環
詳細は「環論」を参照
非可換環の研究は現代代数学(特に環論)の大きな部分を占める主題である。非可換環はしばしば可換環が持たないような興味深い不変性を示す。例えば、非自明な真の左または右イデアルを持つけれども単純環である(つまり非自明で真の両側イデアルをもたない)ような非可換環が存在する(例えば体(より一般に単純環)上の2次以上の正方行列環)。このような例から、非可換環の研究においては直感的でないような考え違いをする可能性について留意すべきであることがわかる。
ベクトル空間の理論を雛形にして、非可換環論における研究対象の特別な場合を考えよう。線型代数学においてベクトル空間の「スカラー」はある体(可換可除環)でなければならなかった。しかし加群の概念ではスカラーはある抽象環であることのみが課されるので、この場合、可換性も可除性も必要ではない。加群の理論は非可換環論において様々な応用があり、たとえば環上の加群を考えることで環自身の構造についての情報が得られるというようなことも多い。環のジャコブソン根基の概念はそのようなものの例である。実際これは、環上の左単純加群の左零化域全ての交わりに等しい(「左」を全部いっせいに「右」に変えてもよい)。ジャコブソン根基がその環の左または右極大イデアル全体の交わりと見ることもできるという事実は、加群がどれほど環の内部的な構造を反映しているのかを示すものといえる。確認しておくと、可換か非可換かに関わらず任意の環において、すべての極大右イデアルの交わりは、すべての極大左イデアルの交わりに等しい。従って、ジャコブソン根基は非可換環に対してうまく定義することができないように見える概念を捉えるものとも見ることができる。
(引用終り)
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s