[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
448(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/20(木)00:23 ID:gmO23IhH(1/5) AAS
>>434 補足
”斜体は自明でない両側イデアルを持たぬゆえ単純であり、特に可換単純環は常に可換体を成すが、一般に単純環であって斜体とならぬものが存在する。”
外部リンク:ja.wikipedia.org
斜体 (数学)
斜体(しゃたい、英: skew field; 歪体, 独: Schiefkorper, 仏: corps, corps gauche)は加減乗除が可能な代数系である[1][注 1]。除法の可能な環であるという意味で可除環(かじょかん、division ring, Divisionsring)ともいう[3]。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体[4](たげんたい、division algebra, algebre a division; 可除多元環)と呼称することも多い[注 2]。非可換な積を持つ体を非可換体(ひかかんたい、non-commutative field, corps non commutatif)という[2]。
性質・諸概念
逆元の存在から、斜体 D の零でない任意の(左・右・両側)イデアル I は D の単位元 1D を含まねばならず、それゆえに I は D 全体に一致せねばならない。逆に、左イデアルが零か全体にかぎるような単位的(結合)環は斜体となる(右イデアルに関する条件からも同じことがいえる)。斜体は自明でない両側イデアルを持たぬゆえ単純であり、特に可換単純環は常に可換体を成すが、一般に単純環であって斜体とならぬものが存在する。
省7
449(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/20(木)00:24 ID:gmO23IhH(2/5) AAS
>>448
つづき
諸概念
体 K の乗法群の任意の有限部分群は巡回群である。
体の元の濃度を位数といい、有限な位数を持つ体を有限体と呼び、そうでない体を無限体と呼ぶ。有限斜体は常に可換体である(ウェダーバーンの小定理)。
n・1 で単位元 1 を n 回足したものを表すとき、n・1 = 0 となるような正の整数 n のうち最も小さなものをその体の標数という。ただし、そのような n が存在しないとき標数は 0 であると決める。体の標数は 0 または素数である。
省8
467(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/21(金)07:32 ID:WrfyH/cJ(1/22) AAS
>>448 補足
(抜粋)
外部リンク:ja.wikipedia.org
斜体 (数学)
性質・諸概念
逆元の存在から、斜体 D の零でない任意の(左・右・両側)イデアル I は D の単位元 1D を含まねばならず、それゆえに I は D 全体に一致せねばならない。逆に、左イデアルが零か全体にかぎるような単位的(結合)環は斜体となる(右イデアルに関する条件からも同じことがいえる)。斜体は自明でない両側イデアルを持たぬゆえ単純であり、特に可換単純環は常に可換体を成すが、一般に単純環であって斜体とならぬものが存在する。
(引用終り)
省12
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s