[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
401
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/18(火)11:34 ID:6E5Q9lbT(2/9) AAS
>>371 補足

環における 零因子と逆元の関係
下記の全商環に全部書いてあるね
いろいろ書いてあるが、大体思っていた通りだな

(参考)
外部リンク:ja.wikipedia.org
全商環
省8
402: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/18(火)11:35 ID:6E5Q9lbT(3/9) AAS
>>401
つづき


R がアルティン環ならば、R の任意の元は単元であるか零因子であるかのいずれかであるから、非零因子全体の成す集合 S は R の単数群 R× に等しいから、全商環 Q(R) は (R×)-1R と書けるが、しかしそもそも S = R× の元はすべて可逆だったのだから、(R×)^-1 ⊂ R であり、Q(R) = R が成立する。

同様のことが可換フォンノイマン正則環 R でもおきる。R の元 a が零因子ではないとすると、フォンノイマン正則環においては適当な元 x ∈ R をとって a=axa とかくことができるから、変形して a(xa - 1)=0 なる方程式を得るが、a は零因子ではないとしたのだから xa=1 となり、すなわち a が単元であることが従う。ゆえにここでも Q(R) = R である。

応用
代数幾何学において、スキーム上の全商環の層を考えることができて、それを用いてカルティエ因子 (Cartier divisor) の定義が与えられる。
省23
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s