[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
306(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/15(土)06:56 ID:lDTZxP5F(2/3) AAS
>>281 補足
”群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 ? g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
省16
307(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/15(土)06:58 ID:lDTZxP5F(3/3) AAS
>>306
つづき
零因子について(少なくとも可換環の場合には)位相幾何学的な解釈をすることができる。環 R が可換整域となるための必要十分条件は、R が被約環(つまり冪零元を持たない環)であり、かつそのスペクトル Spec R が既約位相空間となることである。前者の性質はある種の無限小の情報を保有しているとしばしば考えられ、対して後者はより幾何学的な情報を与えている。例えば、体 k 上の環 k[x, y]/(xy) は整域でない(x および y の属する類が零因子を与える)が、これは幾何学的にはこの環のスペクトルが既約でない(実際に、二つの既約成分である直線 x = 0 と y = 0 の和となる)ことに対応する。
群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 ? g が得られる。
省12
308: 2020/08/15(土)07:20 ID:SNsaKEgj(2/4) AAS
>>305-307
線形代数の基礎すら知らず、任意の正方行列は正則行列だ、
などとほざく素人に環論なんか無理 諦めな
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s