[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
283
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/14(金)18:34 ID:OxWPj/ry(3/7) AAS
>>282
つづき

外部リンク:ja.wikipedia.org
モノイド

単系(たんけい、英: monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。

モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。

定義
省10
285
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/14(金)18:35 ID:OxWPj/ry(4/7) AAS
>>283
つづき

M の任意の元 a, b, c に対し、a ・ b = a ・ c が成り立つならば、常に b = c を帰結することができる
という条件を満たすときにいう。消約的可換モノイドは常にグロタンディーク構成によって群に埋め込むことができる。これは、整数全体の成す加法群(加法演算 "+" に関する群)を自然数全体の成す加法モノイド(加法演算 "+" に関する消約的可換モノイド)から構成する方法の一般化である。しかし、非可換消約的モノイドは必ずしも群に埋め込み可能でない。

消約的モノイドが有限ならば、実は群になる。実際、モノイドの元 x を一つ選べば、有限性より適当な m > n > 0 をとって xn = xm とすることができるが、これは消約律により xm-n = e(e はモノイドの単位元)となり、xm-n-1 が x の逆元となる。

モノイドの右消約元の全体あるいは左消約元の全体は部分モノイドを成す(単位元を含むのは明らかだが、演算が閉じていることはそれほど明らかではない)。これは、任意の可換モノイドの消約元の全体はかならず群に延長することができるということを意味している。

モノイド M は、M の各元 a がそれぞれ
省3
292: 2020/08/14(金)19:04 ID:tstI7/Nb(7/11) AAS
>>281-286
零因子っていわなくなったね
>>173の間違いを認めたくないなんて
どうしようもない小者だね

だから数学が理解できない馬鹿のままなんだよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s