[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
898: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/29(土) 13:37:45.02 ID:T0GrcKp2 >>897 つづき Hence, R is a division ring because we have already seen that a ring R is a division ring if and only if the R-module R is a simple R-module. Thus, our problem of showing that a nonzero ring R is a division ring if every R-module is free is solved once we establish that every nonzero ring has a simple module. To this end it is convenient to have the following. P220 Definition Let M be a nonzero R-module. A submodule M' of M is said to be a maximal submodule of M if and only if M'±M and M' and M are the only submodules of M containing M'. The following characterization of maximal submodules of a module is an almost immediate consequence of the definition. Basic Property 8.6 A submodule M' of the R-module M is a maximal submodule of M if and only if M/M' is a simple R-module. PROOF: This is a direct consequence of the isomorphism established by the canonical surjective morphism kM,M-:M-≫MIM' between the set of submodules of M containing M' and the set of submodules of MIM'. Hence, in order to show that a nonzero ring R has simple modules, it suffices to show that the R- module R has a maximal submodule M because in that case R/M is a simple R-module. Proposition 8.7 Let R be a nonzero ring. Then every submodule M' of R, different from R, is contained in a maximal submodule of R. Consequently, the ring R has at least one maximal submodule M which means that R also has the simple R-module R/M. PROOF: つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/898
899: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/29(土) 13:38:07.43 ID:T0GrcKp2 >>898 つづき P221 Because F is an inductive set, it must have a maximal element M by Zorn's lemma. We leave it to the reader to verify that M is a maximal submodule of R. Because M obviously contains M', the first part of the proposition is proven. In the light of this result, to see that R contains at least one maximal submodule, all we have to do is find some submodule M' of R different from R. Because R is not the zero ring, the zero submodule of R will do. The rest of the proposition now follows trivially from our previous characterization of maximal submodules. In the light of this discussion, we have also established the following. Theorem 8.8 For a nonzero ring R, the following statements are equivalent: (a) R is a division ring. (b) Every R-module is a free R-module. (c) Every nonzero R-module generated by a single element is a free R-module. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595166668/899
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s