[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
891: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/29(土) 13:26:12.38 ID:T0GrcKp2 >>724 (引用開始) https://ja.wikipedia.org/wiki/%E6%96%9C%E4%BD%93_(%E6%95%B0%E5%AD%A6)#CITEREFAuslanderBuchsbaum2004 斜体 (数学) 斜体であるという性質は加群の圏の性質から特徴づけることもできる。環 R が斜体である必要十分条件はすべての左 R 加群が自由加群であることである[5]。 出典 5.^ Auslander & Buchsbaum 2004, p. 221, Theorem 6.8.8. 参考文献 ・Auslander, Maurice; Buchsbaum, David (2014). Groups, Rings, Modules. Dover. ISBN 978-0-486-49082-3. MR0366959. Zbl 0325.13001 読んだ なかなか面白かったな 以下要点抜粋(興味のある方は本文をどぞ) >https://upload.wikimedia.org/wikipedia/commons/a/a0/Groups_Rings_Modules_Auslander_Hathitrust.pdf Groups, Rings, Modules. Auslander, Maurice; Buchsbaum, David (1974). (抜粋) P57 Definition Let R be a ring. By an R -module structure on an abelian group M we mean a map RxM→M which we denote by (r, m)→rm satisfying: (a) (r1 + r2)m = r1m + r2m. (b) r(m1 + m2) = rm1 + rm2. (c) (r1r2)(m) = r1(r2m). (d) 1m = m. An abelian group together with an R-module structure is called an It-module. We shall return later on to this general notion of a module. In fact, most of this book will be devoted to a detailed study of rings and modules. つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/891
892: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/29(土) 13:27:18.99 ID:T0GrcKp2 >>891 つづき P210 7. FREE R-MODULES Undoubtedly, the modules that are most familiar to the reader are vector spaces over a field. Probably the most distinctive feature of the theory of vector spaces is that every vector space has a basis. After generalizing the notion of a basis from vector spaces over fields to modules over arbitrary rings, we introduce the notion of a free module over an arbitrary ring. Namely, an R -module is a free R -module if and only if it has a basis. Definition Let M be an R-module. A subset S of M is said to be a linearly independent subset of M if each finite subset of distinct elements s1, . . . , sn in S has the property that given r1, . . . , rn in R such that Σi=1〜n risi =0, then each ri = 0 for i = 1, . . . , n. Before giving examples of linearly independent subsets of modules, it is convenient to have the following easily verified properties. Basic Properties 7.1 Let M be an R-module. (a) The empty set is a linearly independent subset of M. (b) A subset S of M consisting of a single element m is a linearly independent subset of M if and only if for any r in R we have rm = 0 implies r = 0. Hence, the subset {m} is linearly independent if and only if the morphism of R-modules R→M given by r→rm is a monomorphism. (c) If S is a linearly independent subset of M, then every subset of S is also a linearly independent subset of M. (d) For a subset S of M, the following statements are equivalent: (i)S is a linearly independent subset of M. (ii) Each finite subset of S is a linearly independent subset of M. つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/892
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s