[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
667: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:04:08.81 ID:2yNZ8A8t >>665 つづき ”単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。” https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E7%94%9F%E6%88%90%E5%8A%A0%E7%BE%A4 有限生成加群 有限生成加群(ゆうげんせいせいかぐん、英: finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる[1]。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。 定義 左 R-加群 M が有限生成とは、M の元 a1, a2, ..., an が存在して、すべての M の元 x に対して、R の元 r1, r2, ..., rn が存在して、x = r1a1 + r2a2 + ... + rnan となることである。 この場合、集合 {a1, a2, ..., an} は M の生成集合と呼ばれる。有限個の生成元は基底である必要はない、なぜならそれらは R 上一次独立である必要はないからだ。より圏論的な特徴づけとしては次がある。M は有限生成であるのは、ある自然数 n に対して全射 R-線型写像 R^{n}→ M が存在する(つまり M は有限ランクの自由加群の剰余加群である)とき、かつそのときに限る[2]。 加群 M の部分集合 S が有限生成部分加群 N を生成すれば、N の有限個の生成元は S からとってくることができる(なぜなら S の高々有限個の元しか有限個の生成元を表現するのに必要ないからである)。 任意の加群は有限生成部分加群の増大列の和集合である。 加群 M が体 R 上のベクトル空間であり生成集合が一次独立な場合には、n は well-defined で M の次元と呼ばれる(well-defined は任意の一次独立な生成集合は n 個の元をもつという意味である。これはベクトル空間の次元定理である)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/667
668: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:05:54.78 ID:2yNZ8A8t >>667 つづき いくつかの事実 有限生成加群の部分加群は一般には有限生成でない。例えば、可算個の変数をもつ多項式環 R = Z[X1, X2, ...] を考えよう。R 自身は有限生成 R-加群である({1} が生成集合)。定数項が 0 の多項式すべてからなる部分加群 K を考えよ。すべての多項式は係数が0でないような有限個の項のみからなるから、R-加群 K は有限生成でない。 一般に、加群は、すべての部分加群が有限生成であるときにネーター加群と呼ばれる。ネーター環上の有限生成加群はネーター加群である(実はこの性質がネーター環を特徴づける)。ネーター環上の加群が有限生成であるのはそれがネーター加群であるとき、かつそのときに限る。これはヒルベルトの基底定理と似ているが、同じではない。これはネーター環 R 上の多項式環 R[X] はネーター環であるというものである。いずれの事実によってもネーター環上の有限生成代数はまたネーター環である。 より一般に、代数(例えば環)は有限生成加群であれば有限生成代数(英語版)である。逆に、有限生成代数が(係数環上)整であれば、有限生成加群である。(詳細は整拡大参照。) 可換環上の有限生成加群 可換環 R 上の有限生成加群に対して、中山の補題は基本的である。ときどき補題によって有限生成加群に対して有限次元ベクトル空間的な減少を証明することができる。 可換代数 A が R 上有限生成環 (finitely generated ring) であるとは、A の元の集合 G = {x1, ..., xn} が存在して G と R を含む A の最小の部分環 は A 自身であるということである。環の積を元を結合するのに使ってもよいので、単に G の元の R-線型結合以上のものが生成される。例えば、多項式環 R[x] は環として {1,x} で有限生成されるが、加群としてではない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/668
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
3.324s*