[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
606: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/22(土) 22:50:09.72 ID:qg6YAvVW つづき https://ja.wikipedia.org/wiki/%E4%B8%AD%E5%B1%B1%E3%81%AE%E8%A3%9C%E9%A1%8C 中山の補題 (抜粋) 現代代数学や可換環論において、中山の補題(なかやまのほだい、英: Nakayama's lemma、クルル-東屋の定理(Krull?Azumaya theorem)とも[1])は、環(典型的には可換環)のジャコブソン根基とその有限生成加群の間の相互関係を定める。有り体には、補題より直ちに可換環上の有限生成加群は体上のベクトル空間のように振る舞うことが言える。これは代数幾何において重要な道具である、なぜならばそれによって代数多様体の局所的なデータを、局所環上の加群の形において、環の剰余体上のベクトル空間として各点ごとに研究することができるからである。 この補題は、まずヴォルフガンク・クルルによって可換環のイデアルの特殊な場合において発見され、次に一般の場合が Azumaya (1951) によって発見されたにも関わらず、日本人数学者中山正にちなんで名づけられている[1][2]。可換の場合には、補題はケイリー・ハミルトンの定理を一般化した形の単純な帰結であり、これは Atiyah (1969) に書かれている。非可換なときの右イデアルに対する補題の特別な場合は Jacobson (1945) にあり、そのため非可換な中山の補題はジャコブソン-東屋の定理 (Jacobson?Azumaya theorem) と呼ばれることもある[1]。後者はジャコブソン根基の理論にたくさんの応用をもっている[3]。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/606
607: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/22(土) 22:50:44.65 ID:qg6YAvVW >>606 つづき 結果 局所環 中山の補題は具体的な幾何学的重要性を帯びる。局所環は幾何学において点における関数の芽として生じる。局所環上の有限生成加群はきわめて頻繁にベクトル束の断面の芽として生じる。点よりもむしろ芽のレベルで研究するとき、有限次元ベクトル束の概念は連接層の概念に取って代わられる。インフォーマルには、中山の補題は連接層をなおある意味でベクトル束から来ているとみなすことができると言っている。正確には、F を任意のスキーム X 上の OX-加群の連接層とする。点 p ∈ X における F の茎、これは Fp と表記されるが、局所環 Op 上の加群である。p における F のファイバーは ベクトル空間 F(p) = Fp/mpFp である、ただし mp は Op の極大イデアル。中山の補題によってファイバー F(p) の基底は Fp の極小生成集合に持ちあがる。つまり: ・点における連接層 F のファイバーの任意の基底は局所断面の極小基底から来ている。 非可換の場合 補題は非可換単位的環 R 上の右加群に対しても成り立つ。結果の定理は ジャコブソン-東屋の定理 (Jacobson?Azumaya theorem) と呼ばれることもある[1]。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595166668/607
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.049s