[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
581: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/22(土) 15:07:18 ID:qg6YAvVW >>578 下記投稿は、零因子と逆行列の関係を知っていたら、下記の意図が分かるはずだがなwww (>>149より再録) >正:まあ、折角だから書いておくと、正方行列(の成す群)とか多元数あたりな 細かく書いたら切りが無い(^^ 現高校数学で、行列を教えるかどうか知らないが 下記旧高校数学Cでは、行列を教えていた 後は、自学自習して下さい http://www.geisya.or.jp/~mwm48961/kou2/matrix_mul1.html 高校数学 >> 旧高校数学C *** 行列 *** ■零因子 (抜粋) [解説] ● 数については, ab=0ならば,a=0またはb=0です。 (対偶で言えば,a≠0かつb≠0ならばab≠0です。) ● 行列については, AB=0であっても,A=0またはB=0 とは限りません。 (対偶で言えば,A≠0かつB≠0でもAB=0となることがあります。) ※ 教科書では,「A≠0かつB≠0でAB=0となる行列A,Bを零因子という」とされています。 「A≠0かつB≠0でAB=0となるときAをBの左零因子,BをAの右零因子という。」 https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E7%92%B0 行列環 (抜粋) 行列環 は、行列の加法および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。 R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。 行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。 2×2実行列 の多元環 M2(R) は非可換結合多元環の簡単な例である。四元数と同じく R 上 4 次元であるが、四元数とは異なり、行列単位の積 E11E21 = 0 からわかるように、零因子をもち、したがって可除環ではない。その可逆元は正則行列でありそれらは群、一般線型群 GL(2,R) をなす https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90 零因子 http://rio2016.5ch.net/test/read.cgi/math/1595166668/581
592: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/22(土) 16:13:14 ID:qg6YAvVW >>581 (>>149より再録) 零因子と逆行列の関係 しらないFラン数学科卒www(^^; http://rio2016.5ch.net/test/read.cgi/math/1595166668/592
604: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/22(土) 22:48:58.46 ID:qg6YAvVW >>581 補足 雪江の代数学3 書棚の肥やしでつんどくだったが、7.5をちらみしてみると、ヤコブソン根基が出てくる 下記だが、ジャコブソンだ? 普通、雪江の呼び方だろうが(^^ ヤコブソン根基は、直感的な議論としては、「ベキ零根基によく似ている。環論において「悪い」という意味はいくつか考えられるが、その一つは零因子であることである。それよりより広い意味での「悪い」という概念は、単元でない(乗法について可逆でない)ことである」 か、なるほど(^^ https://ja.wikipedia.org/wiki/%E3%82%B8%E3%83%A3%E3%82%B3%E3%83%96%E3%82%BD%E3%83%B3%E6%A0%B9%E5%9F%BA ジャコブソン根基 (抜粋) 環論において、環 R のジャコブソン根基あるいはヤコブソン根基(英: Jacobson radical)とは、すべての単純右 R-加群を零化する R の元からなるイデアルである。定義において「右」の代わりに「左」としても同じイデアルが得られるので、この概念は左右対称である。環のジャコブソン根基をよく J(R) あるいは rad(R) と表すが、他の環の根基との混乱を避けるため、この記事では前者の表記を使う。ジャコブソン根基はジャコブソン(英語版)にちなんで名づけられた。彼は初めてそれを任意の環について(Jacobson 1945)で研究した人である。 環のジャコブソン根基には内在的な特徴づけが数多くあり、そのいくつかは単位元をもたない環に対する定義としても採用することができる。加群の根基はジャコブソン根基の定義を加群を含むように拡張する。ジャコブソン根基は多くの環や加群の理論の結果、例えば中山の補題において、際立った役割を果たす。 直感的な議論 他の環の根基のように、ジャコブソン根基 は「悪い」元の集まりとして考えることができる。この場合「悪い」性質はこれらの元は環のすべての単純左・右加群を零化するということである。比較の目的のため、可換環のベキ零根基 √0 を考えよう。これはすべてのベキ零元からなる。実は任意の環について、環の中心に入っているベキ零元はジャコブソン根基にも入っている[1]。なので、可換環については、ベキ零根基はジャコブソン根基に含まれている。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/604
608: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/22(土) 22:54:08.50 ID:qg6YAvVW >>593 >零因子云々は余計な知識であって >ここでは全く必要ない 笑えるわ なに言い訳してんだ、オチコボレが (>>581) 零因子と逆行列の関係 しらないFラン数学科卒www(^^; http://rio2016.5ch.net/test/read.cgi/math/1595166668/608
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s