[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
472: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/21(金) 07:38:30 ID:WrfyH/cJ >>471 つづき 注釈 1^ 環論において、環 R の "unit"(単元)は、単位元 1R に限らず、その環 R において乗法逆元を持つ元(可逆元)を総した呼称である。しかし、可逆性は単位元の存在なしには定義できないし、単位元は必ず単元であるので、何らかの単元を持つ環は必ず単位的環となって、"ring with (a) unit" という呼称は図らずも齟齬をきたさない。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1595166668/472
473: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/21(金) 07:46:12 ID:WrfyH/cJ >>472 さらに、ついで 環 (数学)の関連箇所 自分の備忘録として(^^; https://ja.wikipedia.org/wiki/%E7%92%B0_(%E6%95%B0%E5%AD%A6) 環 (数学) (抜粋) 環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった[1]。 現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。 定義に関する注意 公理的な取り扱いにおいて、文献によってはしばしば異なる条件を公理として課すことがあるので、そのことに留意すべきである。環論の場合例えば、公理として「環の乗法単位元が加法単位元と異なる」という条件 1 ≠ 0 を課すことがある。これは特に「自明な環は環の一種とは考えない」と宣言することと同じである。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/473
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s