[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
401: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/18(火) 11:34:08 ID:6E5Q9lbT >>371 補足 環における 零因子と逆元の関係 下記の全商環に全部書いてあるね いろいろ書いてあるが、大体思っていた通りだな (参考) https://ja.wikipedia.org/wiki/%E5%85%A8%E5%95%86%E7%92%B0 全商環 全商環(ぜんしょうかん、英: total quotient ring[1])あるいは全分数の環 (total ring of fractions[2]) は、整域に対する商体の構成を、零因子をもつ可換環に対して一般化するものである。この構成は、可換環に対して、その非零因子の「逆元」を付け加えて、より大きな環を作り出す操作になっている。零因子を可逆化することはできない[* 1]ので、全商環はもうこれ以上逆元を加えて拡大することはできないものになっている。このことから、全商環は「可能な限り逆元を付け加えた」という意味で最大の環である。 注意 1^ a が R の零元と異なる零因子で、a が R の全商環 Q の中で単元となると仮定すると、R の零元でない元 b で ab = 0 を満たすものと、Q の元 c で ca = 1 を満たすものとが存在することになるが、 0 = c(ab) = (ca)b = b となり、b が零元でないことに反する。従って R の零因子を Q の単元にすることはできない。 定義 R が可換環のとき、S を R における非零因子全体の成す集合とすれば、S は R の零元を含まない R の積閉集合(乗法に関して閉じているような R の部分集合)である。従って、環 R の S による局所化として、全商環 S-1R が得られる。可換環 R の全商環をしばしば Q(R) とも表す。 R が可換整域ならば、非零因子の全体は S = R* (= R - {0}) であり、全商環は R の商体に一致する。整域 R の商体を Q(R) と表すことがあるが、整域の全商環と商体が一致するという事実から、単に Q(R) と書いた場合にいずれの意味であるかについて誤解の生じることはない。 作り方から S は零因子を含まないから、自然な写像 R → Q(R) は単射であり、従って全商環 Q(R) は可換環 R の拡大環となる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/401
402: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/18(火) 11:35:11 ID:6E5Q9lbT >>401 つづき 例 R がアルティン環ならば、R の任意の元は単元であるか零因子であるかのいずれかであるから、非零因子全体の成す集合 S は R の単数群 R× に等しいから、全商環 Q(R) は (R×)-1R と書けるが、しかしそもそも S = R× の元はすべて可逆だったのだから、(R×)^-1 ⊂ R であり、Q(R) = R が成立する。 同様のことが可換フォンノイマン正則環 R でもおきる。R の元 a が零因子ではないとすると、フォンノイマン正則環においては適当な元 x ∈ R をとって a=axa とかくことができるから、変形して a(xa - 1)=0 なる方程式を得るが、a は零因子ではないとしたのだから xa=1 となり、すなわち a が単元であることが従う。ゆえにここでも Q(R) = R である。 応用 代数幾何学において、スキーム上の全商環の層を考えることができて、それを用いてカルティエ因子 (Cartier divisor) の定義が与えられる。 一般化 R が可換環で S が R の単位元を含む任意の乗法的マグマならば、同様の方法で S^-1R を構成できる。ただし、分母になれるのは S の元だけである。S に R の零元が含まれるならば S^-1R は自明な環となる。詳細は環の局所化を参照。 典拠 1^ Matsumura (1980), p. 12 2^ Matsumura (1989), p. 21 参考文献 Hideyuki Matsumura, Commutative algebra, 1980 Hideyuki Matsumura, Commutative ring theory, 1989 IUTを読むための用語集資料集スレ https://rio2016.5ch.net/test/read.cgi/math/1592654877/455 PDFが落ちていた http://inis.jinr.ru/sl/vol2/mathematics/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/Matsumura,_Commutative_Algebra,1980.pdf Matsumura,_Commutative_Algebra,1980 http://chairejeanmorlet-1stsemester2015.weebly.com/uploads/2/5/7/4/25749056/hideyuki_matsumura_commutative_ring_theory_cambbookos.org.pdf Commutative ring theory HIDEYUKI MATSUMURA Department of Mathematics, Faculty of Sciences Nagoya University, Nagoya, Japan Translated by M. Reid H. Matsumura, 1980. English translation 0 Cambridge University Press 1986 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595166668/402
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.043s