[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
194(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/11(火)16:03 ID:fHpBNDDC(1/5) AAS
>>176 補足
<「正則行列」の話>
>よって、”Aが正則”と”Aは零因子ではない”は、同値ですな!!
そうそう、証明と同様に”理解”というのが、とても大事ですね(^^
神脳 河野玄斗くんも書いています(下記)
”暗記科目でも、まずは理解に専念して全体像をつかむ”
”数学の勉強法:問題を解く際に常にその抽象論を意識する。
省30
195(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/11(火)16:03 ID:fHpBNDDC(2/5) AAS
>>194
つづき
2、論理的思考力
必ず正しいと言える論理を積み重ねて答えにたどり着く
論理の筋が通っていて飛躍はないか
(2)数学の勉強法
1、基本問題はパターンを攻略する
省25
199(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/11(火)17:11 ID:fHpBNDDC(3/5) AAS
>>194 補足
1.理解が大事。その通りです
2.大学入試などでは、応用問題が理解の試金石なのですが
3.しかし、数学科院試レベルになると、あまりに難しい問題を出すと、かえって差がつかないおそれがあるので、基本問題も混ぜたり
で、あんまし理解していなくても、「証明の基本パターン」を暗記して、吐き出すことで、点は取れる問題もあるでしょうね。εδとかねw(^^;
でも、暗記を吐き出して、「証明のパターン」を当てはめは出来ても、本当に理解しているのかどうか?www
4.しかし、ペーパーテストでは、「本当に分かっているの?」はムリなのです
省20
200(9): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/11(火)17:44 ID:fHpBNDDC(4/5) AAS
>>199 補足の補足
下記”逆行列の求め方”より
1.逆行列の公式:A^-1=1/|A| t[Aij] (正則行列の場合)
(上記1を式変形して)
2.A・t[Aij] =|A| (正則行列を含む全正方行列の場合)
3.正則行列とは、|A|≠0 (行列式|A|≠0。これは、逆行列の公式より直ちに出る)
つまりは、「”Aが正則”と”Aは零因子ではない”は、同値」は、
省14
201(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/11(火)17:57 ID:fHpBNDDC(5/5) AAS
>>141-142 補足
”非可換群”の例として
「まあ、折角だから書いておくと、正方行列(の成す群)とか多元数あたりな」
と言った
当然、コンテキストして、”群”が前提の話
”群”が前提の話として、逆元の存在もまた前提です
そして、念頭にあったのは、群の表現論で、正則行列を使う話です(>>155ご参照)
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s