[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
663: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 11:20:51.30 ID:2yNZ8A8t >>662 ありがと ごくろうさん http://rio2016.5ch.net/test/read.cgi/math/1595166668/663
664: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 11:23:14.08 ID:2yNZ8A8t >>659 >参考になるな。自由は"free "の訳語だが、"free "には、ただ(只)とか、ある性質が存在しないときにも使う >”ねじれ”が、"free "なのかもね 下記も、ご参考 "free "は、日本語の”自由”よりも、意味の範囲が広いんだね https://en.wikipedia.org/wiki/Free_object Free object (抜粋) In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. It is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Examples include free groups, tensor algebras, or free lattices. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. http://rio2016.5ch.net/test/read.cgi/math/1595166668/664
665: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:03:22.83 ID:2yNZ8A8t >>664 「捩れ (代数学)」 ”環上の加群の場合は、環のある正則元によって零化される加群の元を言う。” ”環 R 上の加群 M は、t(M) = M であるとき、捩れ加群 (torsion module) と呼ばれ、t(M) = 0 であるとき、捩れがない (torsion-free) と言う。” ”加群に対して ・M を任意の環 R 上の自由加群とすると、定義より直ちに、M は捩れがないことが分かる。特に、任意の自由アーベル群は捩れを持たず、体 K 上のベクトル空間は K 上の加群と見たとき、捩れがない。 ・有限次元ベクトル空間 V に作用する線型作用素 L を考える。V を自然な方法で F[L]-加群と見ると、(多くのことの結果として、単純に有限次元性から、あるいはケイリー・ハミルトンの定理によって)V は捩れ F[L] 加群である。” https://ja.wikipedia.org/wiki/%E6%8D%A9%E3%82%8C_(%E4%BB%A3%E6%95%B0%E5%AD%A6) 捩れ (代数学) (抜粋) 捩れ(ねじれ、英: torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。 加群に対して 環 R 上の加群 M の元 m は、環の正則元[注 1] r が存在して、m を零化する、すなわち r?m = 0 となるとき、加群の捩れ元 (torsion element) という[3][注 2]。加群 M の捩れ元すべてからなる集合を t(M) と表す。 環 R 上の加群 M は、t(M) = M であるとき、捩れ加群 (torsion module) と呼ばれ、t(M) = 0 であるとき、捩れがない (torsion-free) と言う。t(M) が M の部分加群をなすとき、t(M) を捩れ部分加群 (torsion submodule) という。環 R が整域(可換性だけでは足りない。実際Z/6Zを自分の上の加群と見てみればよい)であれば、t(M) は捩れ部分加群である。R が非可換であれば t(M) は部分加群になるとは限らない。R が右Ore環(英語版)であることと、t(M) がすべての右 R 加群に対して M の部分加群であることとは同値である[4]。右ネーター域は Ore であるので、これは、R が右ネーター域の場合を含んでいる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/665
666: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:03:44.81 ID:2yNZ8A8t >>665 つづき より一般的に、M を環 R 上の加群とし、S を R の積閉集合とする。このとき標準的な写像 M → MS の核を tS(M) と表す。tS(M) = M のとき、つまり M のすべての元 m は、S のある元 s によって零化されるとき、M は S-捩れ (S-torsion) と呼ばれる[5]。また tS(M) = 0 のとき、M はS-捻れなし (S-torsionless) という。特に、S を環 R の正則元全体の集合ととると上記の定義が再現される。 加群に対して ・M を任意の環 R 上の自由加群とすると、定義より直ちに、M は捩れがないことが分かる。特に、任意の自由アーベル群は捩れを持たず、体 K 上のベクトル空間は K 上の加群と見たとき、捩れがない。 ・有限次元ベクトル空間 V に作用する線型作用素 L を考える。V を自然な方法で F[L]-加群と見ると、(多くのことの結果として、単純に有限次元性から、あるいはケイリー・ハミルトンの定理によって)V は捩れ F[L] 加群である。 「有限生成加群」 ”単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。 これはPID上の有限生成加群の構造定理の結果である。 その基本的な形は、PID 上の有限生成加群はねじれ加群と自由加群の直和であるというものである。” つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/666
667: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:04:08.81 ID:2yNZ8A8t >>665 つづき ”単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。” https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E7%94%9F%E6%88%90%E5%8A%A0%E7%BE%A4 有限生成加群 有限生成加群(ゆうげんせいせいかぐん、英: finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる[1]。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。 定義 左 R-加群 M が有限生成とは、M の元 a1, a2, ..., an が存在して、すべての M の元 x に対して、R の元 r1, r2, ..., rn が存在して、x = r1a1 + r2a2 + ... + rnan となることである。 この場合、集合 {a1, a2, ..., an} は M の生成集合と呼ばれる。有限個の生成元は基底である必要はない、なぜならそれらは R 上一次独立である必要はないからだ。より圏論的な特徴づけとしては次がある。M は有限生成であるのは、ある自然数 n に対して全射 R-線型写像 R^{n}→ M が存在する(つまり M は有限ランクの自由加群の剰余加群である)とき、かつそのときに限る[2]。 加群 M の部分集合 S が有限生成部分加群 N を生成すれば、N の有限個の生成元は S からとってくることができる(なぜなら S の高々有限個の元しか有限個の生成元を表現するのに必要ないからである)。 任意の加群は有限生成部分加群の増大列の和集合である。 加群 M が体 R 上のベクトル空間であり生成集合が一次独立な場合には、n は well-defined で M の次元と呼ばれる(well-defined は任意の一次独立な生成集合は n 個の元をもつという意味である。これはベクトル空間の次元定理である)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/667
668: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:05:54.78 ID:2yNZ8A8t >>667 つづき いくつかの事実 有限生成加群の部分加群は一般には有限生成でない。例えば、可算個の変数をもつ多項式環 R = Z[X1, X2, ...] を考えよう。R 自身は有限生成 R-加群である({1} が生成集合)。定数項が 0 の多項式すべてからなる部分加群 K を考えよ。すべての多項式は係数が0でないような有限個の項のみからなるから、R-加群 K は有限生成でない。 一般に、加群は、すべての部分加群が有限生成であるときにネーター加群と呼ばれる。ネーター環上の有限生成加群はネーター加群である(実はこの性質がネーター環を特徴づける)。ネーター環上の加群が有限生成であるのはそれがネーター加群であるとき、かつそのときに限る。これはヒルベルトの基底定理と似ているが、同じではない。これはネーター環 R 上の多項式環 R[X] はネーター環であるというものである。いずれの事実によってもネーター環上の有限生成代数はまたネーター環である。 より一般に、代数(例えば環)は有限生成加群であれば有限生成代数(英語版)である。逆に、有限生成代数が(係数環上)整であれば、有限生成加群である。(詳細は整拡大参照。) 可換環上の有限生成加群 可換環 R 上の有限生成加群に対して、中山の補題は基本的である。ときどき補題によって有限生成加群に対して有限次元ベクトル空間的な減少を証明することができる。 可換代数 A が R 上有限生成環 (finitely generated ring) であるとは、A の元の集合 G = {x1, ..., xn} が存在して G と R を含む A の最小の部分環 は A 自身であるということである。環の積を元を結合するのに使ってもよいので、単に G の元の R-線型結合以上のものが生成される。例えば、多項式環 R[x] は環として {1,x} で有限生成されるが、加群としてではない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/668
669: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:08:00.68 ID:2yNZ8A8t >>668 つづき 生成ランク 単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。 これはPID上の有限生成加群の構造定理の結果である。 その基本的な形は、PID 上の有限生成加群はねじれ加群と自由加群の直和であるというものである。 しかしそれは直接次のようにも示せる。 M を PID A 上捩れなし有限生成加群とし、F を極大自由部分加群とする。 f を A の元であって fM⊂ F とする。 このとき fM は自由加群の部分加群で A は PID なので自由である。 しかし今 f:M→ fM は M が捩れなしだから同型である。 https://ja.wikipedia.org/wiki/%E7%92%B0%E3%81%AE%E5%B1%80%E6%89%80%E5%8C%96 環の局所化 (抜粋) 環の局所化(きょくしょか、英: localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)[注 1] は、環に乗法逆元を機械的に添加する方法である。すなわち、環 R とその部分集合 S が与えられたとき、環 R' と R から R' への環準同型を構成して、S の準同型像が R' における単元(可逆元)のみからなるようにする。さらに、R' が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 R の部分集合 S による局所化は S?1R で表され、あるいは S が素イデアル {p}}} {p}} の補集合であるときには R_ {p}}}R_{{ {p}}}} で表される。S?1R のことを RS と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/669
670: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:08:20.86 ID:2yNZ8A8t >>669 つづき 用語について 「局所化」の名の起源は代数幾何学にある。R はある幾何学的対象(代数多様体)の上で定義された函数環とする。この多様体を点 p の近傍で「局所的に」調べようとするならば、p の近傍で 0 でないような函数全体の成す集合 S を考えることになる。その意味で、R を S に関して局所化して得られる環 S?1R は p の近傍における V の挙動についての情報のみをふくんでいる(局所環も参照)。 数論および代数的位相幾何学において、数 n「における」環や空間とか、n から「遠い」などという言及をすることがある。「n から遠い」("away from n") の意味は、「その環の中で n が可逆」(従って、Z[1/n]-代数になる)ということである。例えば、体については「素数 p から遠い」と言えば「その体の標数は p と異なる」という意味になる。Z[1/2] は「2 から遠い」が F2 や Z はそうではない。 形式的な構成 単元の積はふたたび単元であり、環準同型は積を保つことから、局所化に用いる S は R の乗法モノイドの部分モノイドであることが求められる。すなわち、S は 1 を含み、s, t が S の元ならば st もやはり S に含まれる。環 R のこのような性質を持つ部分集合を乗法的集合(乗法系)あるいは積閉集合(乗法的閉集合)と呼ぶ。 環 R が整域である場合には、局所化は容易に構成することができる。0 が単元となるような環は自明な環 {0} のみであるから、S に 0 が含まれるときには、局所化 S?1R は必ず {0} となる。それ以外の場合には、R の商体 K を利用することができる。すなわち、S?1R として、商体 K の部分環であって、R の元 r と S の元 s によって r/s の形に表される元全体になっているものをとればよい。この場合、自然写像 R → S?1R は標準的な埋め込みであり、特に単射になる(一般の場合にはこれは保証されない)。例えば、二進分数(英語版) の全体は、整数環 Z の 2 冪全体の成す積閉集合に関する局所化である。この場合 S?1R が二進小数の全体で R が整数全体、S は 2 冪の全体であって、R から S?1R への自然写像は単射である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/670
671: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:08:41.27 ID:2yNZ8A8t >>670 つづき 一般の可換環に対しては商体は存在しないのだけれども、それでも S の元を分母に持つような「分数」からなる局所化を構成することは可能である。整域の場合とは対照的に、分子と分母を安全に「約分」できるのは、S の元の寄与の分だけである。 環の局所化の普遍性 環準同型 j : R → S?1R は S の各元を S?1R の単元に写し、かつ f: R → T を別の環準同型で S の各元を T の単元に写すものとすれば、環準同型 g: S?1R → T で f = g ? j を満たすものがただ一つ存在する。 この普遍性を圏論の言葉で書けば次のようになる。環 R とその部分集合 S をとり、R 上の多元環 A で標準準同型 R → A のもと S の各元が A の単元となるようなもの全体の成す集合を考える。この集合の元を対象とし、R-線型写像を射として圏が定まり、この圏の始対象を R の S における局所化と呼ぶ。 例 整数環を Z, 有理数体を Q と表す。 ・可換環 R が与えられたとき、R の非零因子(すなわち、R の元 a であって、a を掛けるという操作が R 上の単射自己準同型となるようなもの)全体の成す集合 S は積閉集合である。このときの環 S?1R は R の全商環と呼ばれ、しばしば Q(R) や K(R) などで表される。この S は R から S?1R への標準準同型が単射となるような積閉集合として最大のものである。さらに R が整域ならば、これは R の商体に他ならない。 ・Z/6Z の素イデアルは 2Z/6Z と 3Z/6Z の2つである(したがってクルル次元 0 である)。 これらの極大イデアルによる局所化はそれぞれ F2, F3 であり体である。 実は、可換環が被約かつクルル次元 0 であることと、任意の極大イデアルにおける局所化が体であることは同値である。(さらにこれはフォン・ノイマン正則であることとも同値である。) つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/671
672: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:09:03.50 ID:2yNZ8A8t >>671 つづき 性質 局所化 S?1R の性質をいくつか挙げる。 ・可換環 R と R の素イデアル p に対して、 p の R における補集合 R\ p は積閉集合で、対応する局所化を R_p であらわす。このとき、 R_p の唯一の極大イデアルは pRp={r/s | r ∈ p, s ∈ R\p}に等しい[4]。よって R_p は局所環である。 ・S?1R = {0} となる必要十分条件は S が零元 0 を含むことである[2]。 ・環準同型 R → S?1R が単射である必要十分条件は S が零因子を含まないことである。 非可換の場合 非可換環の局所化はより難しく、単元を持つことが見込まれる集合 S の中にも局所化が存在しない場合がある。局所化の存在を保証する条件の一つにオアの条件(英語版) がある。 非可換環が局所化を持つ場合で、明らかに興味の対象となるのが、微分作用素の環の場合である。局所化によって、例えば、微分作用素 D の形式逆元 D?1 を解釈することができる微分方程式に対する D?1 の解釈はいろいろなやり方が様々な文脈で行われるが、局所化の方法による解釈は超局所解析 (microlocal analysis) と呼ばれる、いくつかの分野にわたる大きな数学的理論を形成している。接頭辞 micro- は特にフーリエ理論とも関連がある。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595166668/672
673: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:59:43.36 ID:2yNZ8A8t >>664 追加 ベクトル空間、体、基底 について この関係は、あまり詳しく書いてないですね (参考) https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E7%A9%BA%E9%96%93 ベクトル空間 線型代数学におけるベクトル空間(ベクトルくうかん、英: vector space)、または、線型空間(せんけいくうかん、英: linear space)は、ベクトル(英: vector)と呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(スカラー乗法)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。 定義 「体 F 上のベクトル空間 V 」とは、後に述べるような、二種類の演算を備えた集合 V のことである。ベクトル空間 V の元はベクトル (英: vector ) と呼ばれる。体 F は係数体 (英: coefficient field, scalar field ) と呼ばれる。係数体 F の元はスカラー (英: scalar ) あるいは係数 (英: coefficient ) と呼ばれる。ここではベクトルをスカラーから区別するために、ベクトルは太字で表す[nb 1]。 基底と次元 詳細は「基底」および「次元」を参照 基底は簡明な方法でベクトル空間の構造を明らかにする。 基底とは、適当な添字集合で添字付けられたベクトルの(有限または無限)集合 B = {vi}i ∈ I であって、それが全体空間を張るもののうちで極小となるものを言う。 歴史 ベクトル空間は、平面や空間に座標系を導入することを通じて、アフィン空間から生じる。1636年ごろ、ルネ・デカルトとピエール・ド・フェルマーは、二変数の方程式の解と平面曲線上の点とを等化して、解析幾何学を発見した[4]。座標を用いない幾何学的な解に到達するために、ベルナルド・ボルツァーノは1804年に、点同士および点と直線の間の演算を導入した。これはベクトルの前身となる概念である[5]。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/673
674: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 16:00:13.57 ID:2yNZ8A8t >>673 つづき 加群 詳細は「環上の加群」を参照 ベクトル空間が体に対するものであるように、加群 (英: modules) の概念は環に対するものである。これはベクトル空間の公理において体 F とするところを環 R で置き換えることで得られる[101]。加群の理論はベクトル空間のそれと比べて(環の元に必ずしも乗法逆元が存在しないことで)より複雑なものになっている。 関連項目 ・ベクトル空間代数(英語版) - 体の概念を予め要求せずにベクトル空間を定義する、ベクトル空間の抽象代数学的取扱い。 https://mathoverflow.net/questions/32397/vector-spaces-without-natural-bases Vector spaces without natural bases Mar 29 '16 at 22:39 https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6) 基底 (線型代数学) 定義 (実数全体 R や複素数全体 C のような)体 F 上の線型空間 V の基底 B とは、V の線型独立な部分集合で、V を張る(生成する)ものを言う。より具体的には、B = {v1, …, vn} をベクトル空間 V の有限部分集合とするとき、B が基底であるとは、条件として 線型独立性 a1, …, an ∈ F に対して a1v1 + … + anvn = 0 が成り立つならば、a1 = … = an = 0 でなければならない。 全域性 V のどんな元 x も、適当な a1, …, an ∈ F を選んで x = a1v1 + … + anvn が成り立つようにできる。 を何れも満足することを言う。最後の等式における係数 ai は基底 B に関する x の座標と呼ばれ、線型独立性により座標は一意的に定まることが分かる。 上記の条件を満たす整数nが存在するとき、その線形空間は有限次元であるという。そのようなnが存在しないときは無限次元であるという。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595166668/674
675: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 16:56:18.67 ID:2yNZ8A8t >>674 補足 ”質問: ベクトル空間が基底をもたないとはどういうことですか?基底をもたないということがあるのですか?” 余談ですが、実数体Rベースの有限次元ベクトル空間だと、基底は必ずあるのですね Rが体や斜体ではない一般の環などになると、基底を持つ持たないは、結構ややこしいということですね なるほど (参考) http://www.math.titech.ac.jp/~kotaro/class/2010/linear2/ 線形代数学第二B (2010年度) 山田光太郎 2011年2月11日 講義資料 http://www.math.titech.ac.jp/~kotaro/class/2010/linear2/20101111.pdf 線形代数学第二B 講義資料5 山田光太郎 東工大 2010 年11 月11 日(2010 年11 月11 日訂正) (抜粋) P7 5.3 例 前回みたように F = {f | f は R 上で定義された実数値関数全体 } は R 上の無限次元ベクトル空間となる. P3 質問: F について,F ∋ fk(x) = x^k としたとき√x がf の(原文ママ,"fk の" ということか)線形結合で書けない のは√x がR 上全体で定義されていないからですか? お答え: いいえ.f(x) = e^x で定まるf ∈ F も{fk; k = 0,...,N} の線形結合では表せません. 質問: 基底の存在しないベクトル空間とは要するにRn (n = 1) のことですか?どんなベクトル空間にも基底はあるのが普通ですよね. お答え: 普通ではありません.この授業で扱うのはほとんどが有限次元,というだけのことです. そして無限次元ベクトル空間にもいろいろなものがあり,単純にR1 と書くことはほとんどありません.ここでは深入りしませんが. 質問: ベクトル空間が基底をもたないとはどういうことですか?基底をもたないということがあるのですか? お答え: 例をあげたはず.F は基底をもちません. http://rio2016.5ch.net/test/read.cgi/math/1595166668/675
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.616s*