[過去ログ] 純粋・応用数学(含むガロア理論)3 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
663: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)11:20 ID:2yNZ8A8t(1/13) AAS
>>662
ありがと
ごくろうさん
664
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)11:23 ID:2yNZ8A8t(2/13) AAS
>>659
>参考になるな。自由は"free "の訳語だが、"free "には、ただ(只)とか、ある性質が存在しないときにも使う
>”ねじれ”が、"free "なのかもね

下記も、ご参考
"free "は、日本語の”自由”よりも、意味の範囲が広いんだね

外部リンク:en.wikipedia.org
Free object
省4
665
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:03 ID:2yNZ8A8t(3/13) AAS
>>664
「捩れ (代数学)」
”環上の加群の場合は、環のある正則元によって零化される加群の元を言う。”
”環 R 上の加群 M は、t(M) = M であるとき、捩れ加群 (torsion module) と呼ばれ、t(M) = 0 であるとき、捩れがない (torsion-free) と言う。”
”加群に対して
・M を任意の環 R 上の自由加群とすると、定義より直ちに、M は捩れがないことが分かる。特に、任意の自由アーベル群は捩れを持たず、体 K 上のベクトル空間は K 上の加群と見たとき、捩れがない。
・有限次元ベクトル空間 V に作用する線型作用素 L を考える。V を自然な方法で F[L]-加群と見ると、(多くのことの結果として、単純に有限次元性から、あるいはケイリー・ハミルトンの定理によって)V は捩れ F[L] 加群である。”
省8
666: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:03 ID:2yNZ8A8t(4/13) AAS
>>665
つづき

より一般的に、M を環 R 上の加群とし、S を R の積閉集合とする。このとき標準的な写像 M → MS の核を tS(M) と表す。tS(M) = M のとき、つまり M のすべての元 m は、S のある元 s によって零化されるとき、M は S-捩れ (S-torsion) と呼ばれる[5]。また tS(M) = 0 のとき、M はS-捻れなし (S-torsionless) という。特に、S を環 R の正則元全体の集合ととると上記の定義が再現される。

加群に対して
・M を任意の環 R 上の自由加群とすると、定義より直ちに、M は捩れがないことが分かる。特に、任意の自由アーベル群は捩れを持たず、体 K 上のベクトル空間は K 上の加群と見たとき、捩れがない。
・有限次元ベクトル空間 V に作用する線型作用素 L を考える。V を自然な方法で F[L]-加群と見ると、(多くのことの結果として、単純に有限次元性から、あるいはケイリー・ハミルトンの定理によって)V は捩れ F[L] 加群である。

「有限生成加群」
省4
667
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:04 ID:2yNZ8A8t(5/13) AAS
>>665
つづき

”単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。”
外部リンク:ja.wikipedia.org
有限生成加群

有限生成加群(ゆうげんせいせいかぐん、英: finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる[1]。

関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。
省10
668
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:05 ID:2yNZ8A8t(6/13) AAS
>>667
つづき

いくつかの事実
有限生成加群の部分加群は一般には有限生成でない。例えば、可算個の変数をもつ多項式環 R = Z[X1, X2, ...] を考えよう。R 自身は有限生成 R-加群である({1} が生成集合)。定数項が 0 の多項式すべてからなる部分加群 K を考えよ。すべての多項式は係数が0でないような有限個の項のみからなるから、R-加群 K は有限生成でない。

一般に、加群は、すべての部分加群が有限生成であるときにネーター加群と呼ばれる。ネーター環上の有限生成加群はネーター加群である(実はこの性質がネーター環を特徴づける)。ネーター環上の加群が有限生成であるのはそれがネーター加群であるとき、かつそのときに限る。これはヒルベルトの基底定理と似ているが、同じではない。これはネーター環 R 上の多項式環 R[X] はネーター環であるというものである。いずれの事実によってもネーター環上の有限生成代数はまたネーター環である。

より一般に、代数(例えば環)は有限生成加群であれば有限生成代数(英語版)である。逆に、有限生成代数が(係数環上)整であれば、有限生成加群である。(詳細は整拡大参照。)

可換環上の有限生成加群
省3
669
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:08 ID:2yNZ8A8t(7/13) AAS
>>668
つづき

生成ランク
単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。
これはPID上の有限生成加群の構造定理の結果である。
その基本的な形は、PID 上の有限生成加群はねじれ加群と自由加群の直和であるというものである。
しかしそれは直接次のようにも示せる。
省10
670
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:08 ID:2yNZ8A8t(8/13) AAS
>>669
つづき

用語について
「局所化」の名の起源は代数幾何学にある。R はある幾何学的対象(代数多様体)の上で定義された函数環とする。この多様体を点 p の近傍で「局所的に」調べようとするならば、p の近傍で 0 でないような函数全体の成す集合 S を考えることになる。その意味で、R を S に関して局所化して得られる環 S?1R は p の近傍における V の挙動についての情報のみをふくんでいる(局所環も参照)。

数論および代数的位相幾何学において、数 n「における」環や空間とか、n から「遠い」などという言及をすることがある。「n から遠い」("away from n") の意味は、「その環の中で n が可逆」(従って、Z[1/n]-代数になる)ということである。例えば、体については「素数 p から遠い」と言えば「その体の標数は p と異なる」という意味になる。Z[1/2] は「2 から遠い」が F2 や Z はそうではない。

形式的な構成
単元の積はふたたび単元であり、環準同型は積を保つことから、局所化に用いる S は R の乗法モノイドの部分モノイドであることが求められる。すなわち、S は 1 を含み、s, t が S の元ならば st もやはり S に含まれる。環 R のこのような性質を持つ部分集合を乗法的集合(乗法系)あるいは積閉集合(乗法的閉集合)と呼ぶ。
省2
671
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:08 ID:2yNZ8A8t(9/13) AAS
>>670
つづき

一般の可換環に対しては商体は存在しないのだけれども、それでも S の元を分母に持つような「分数」からなる局所化を構成することは可能である。整域の場合とは対照的に、分子と分母を安全に「約分」できるのは、S の元の寄与の分だけである。

環の局所化の普遍性
環準同型 j : R → S?1R は S の各元を S?1R の単元に写し、かつ f: R → T を別の環準同型で S の各元を T の単元に写すものとすれば、環準同型 g: S?1R → T で f = g ? j を満たすものがただ一つ存在する。
この普遍性を圏論の言葉で書けば次のようになる。環 R とその部分集合 S をとり、R 上の多元環 A で標準準同型 R → A のもと S の各元が A の単元となるようなもの全体の成す集合を考える。この集合の元を対象とし、R-線型写像を射として圏が定まり、この圏の始対象を R の S における局所化と呼ぶ。


省6
672: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:09 ID:2yNZ8A8t(10/13) AAS
>>671
つづき

性質
局所化 S?1R の性質をいくつか挙げる。

・可換環 R と R の素イデアル p に対して、 p の R における補集合 R\ p は積閉集合で、対応する局所化を R_p であらわす。このとき、 R_p の唯一の極大イデアルは pRp={r/s | r ∈ p, s ∈ R\p}に等しい[4]。よって R_p は局所環である。
・S?1R = {0} となる必要十分条件は S が零元 0 を含むことである[2]。
・環準同型 R → S?1R が単射である必要十分条件は S が零因子を含まないことである。
省5
673
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)15:59 ID:2yNZ8A8t(11/13) AAS
>>664 追加

ベクトル空間、体、基底 について
この関係は、あまり詳しく書いてないですね

(参考)
外部リンク:ja.wikipedia.org
ベクトル空間

線型代数学におけるベクトル空間(ベクトルくうかん、英: vector space)、または、線型空間(せんけいくうかん、英: linear space)は、ベクトル(英: vector)と呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(スカラー乗法)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。
省9
674
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)16:00 ID:2yNZ8A8t(12/13) AAS
>>673
つづき

加群
詳細は「環上の加群」を参照
ベクトル空間が体に対するものであるように、加群 (英: modules) の概念は環に対するものである。これはベクトル空間の公理において体 F とするところを環 R で置き換えることで得られる[101]。加群の理論はベクトル空間のそれと比べて(環の元に必ずしも乗法逆元が存在しないことで)より複雑なものになっている。

関連項目
・ベクトル空間代数(英語版) - 体の概念を予め要求せずにベクトル空間を定義する、ベクトル空間の抽象代数学的取扱い。
省14
675
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/25(火)16:56 ID:2yNZ8A8t(13/13) AAS
>>674 補足

”質問: ベクトル空間が基底をもたないとはどういうことですか?基底をもたないということがあるのですか?”
余談ですが、実数体Rベースの有限次元ベクトル空間だと、基底は必ずあるのですね

Rが体や斜体ではない一般の環などになると、基底を持つ持たないは、結構ややこしいということですね
なるほど

(参考)
外部リンク:www.math.titech.ac.jp
省19
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.037s