[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
99
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/23(土)00:07 ID:iKDSmfWl(1/31) AAS
>>91 追加

おっちゃんな
>>83
>>何れにしろ、実数直線Rの連結性と ε-N は必須。
>
>必須・・
>ではないでしょ
省22
100
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/23(土)06:55 ID:iKDSmfWl(2/31) AAS
>>99 追加

外部リンク:ja.wikipedia.org
バナッハ空間
(抜粋)
バナッハ空間(バナッハくうかん、英: Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。

解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 Lp-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。

バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む[1]。
省16
152
(2): 2019/11/25(月)18:06 ID:5k7RI9yy(1/2) AAS
おっちゃんです。
>>96
微分形式のことは書かれていない。まあ、一応解析の本なんで。

>>99
バナッハ空間における微分は、その存在性を示さなくても定義可能。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n で、偏微分や全微分が実質的に定義されている。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n での
省2
153
(1): 2019/11/25(月)18:14 ID:5k7RI9yy(2/2) AAS
>>99
>>152>99宛ての1行目について訂正:
バナッハ空間における微分 → 実数体R上のバナッハ空間における微分

それじゃ、おっちゃんもう寝る。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s