[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
367(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/12/12(木)10:22 ID:iZa2yRQu(1/23) AAS
>>366
おっちゃん、どうも、スレ主です。
これやね(下記)
乱流の存在が、NS方程式のミレニアム問題を難しくしているんだね(^^
外部リンク:ja.wikipedia.org
(抜粋)
乱流(らんりゅう、英: turbulence)は、流体の流れ場の状態の一種。乱流でない流れ場は層流と呼ばれる。
省13
368: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/12/12(木)10:23 ID:iZa2yRQu(2/23) AAS
>>367
つづき
外部リンク:ja.wikipedia.org
(抜粋)
レイノルズ数(レイノルズすう、英: Reynolds number、Re)は流体力学において慣性力と粘性力との比で定義される無次元量である。流れの中でのこれら2つの力の相対的な重要性を定量している。
概念は1851年にジョージ・ガブリエル・ストークスにより紹介されたが[2]、レイノルズ数はオズボーン・レイノルズ (1842?1912) の名にちなんで名づけられており、1883年にその利用法について普及させた[3][4]。
流体力学上の問題について次元解析を行う場合にはレイノルズ数は便利であり、異なる実験ケース間での力学的相似性を評価するのに利用される。
省5
375: 2019/12/12(木)10:45 ID:57G1zcAW(2/5) AAS
>>367
その乱流は、突如として生じる流れであり、
NS方程式は非線形放物型 PDE を軸とした他の形の非線形 PDE も交じった連立非線形偏微分方程式で表される。
理論的には、反応拡散方程式と同じように、生物の現象からも生じる放物型発展方程式で或る程度NS方程式を扱うことは出来る。
そのような扱いをするときに、力学系の扱い方のような感じの扱いをすることになる。関数解析は使う。
勿論、時間変数tについての評価式や、実解析的扱いとか、NS方程式には他の扱い方もある。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s