[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
221(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/12/01(日)11:03 ID:id6ENHqe(3/31) AAS
つづき
範疇性
一階述語論理の節で見られたように、一階理論は範疇的でありえない。すなわち、一階述語論理は同形なある一意なモデルを、そのモデルが有限でない限り記述することができない。
しかし、二つの有名なモデル理論に関する定理は基数κ についての κ-範疇性のより弱い概念を扱うことができる。もし濃度がκ である理論Tの二つのモデルが同形であるならば, T はκ-範疇的と呼ばれる。
κ-範疇性の疑問は、κ がその言語の濃度よりも大きいかどうか(すなわち、 アレフ _{0} + |σ|, ここで |σ| はシグネチャの濃度)に決定的に依存していることが分かる。
有限または可算のシグネチャについて、これは非可算のκ についての アレフ _{0}-濃度と κ-濃度の間に根本的な相違があることを意味している。
モデル理論と集合論
省4
222: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/12/01(日)11:04 ID:id6ENHqe(4/31) AAS
>>221
つづき
初期の歴史
主題としてのモデル理論はおおよそ二十世紀の中頃から存在している。しかしながら、特に数理論理学においてそれ以前から研究されていたいくつかの理論はモデル理論的な性質を持っていたと考えることができる。
モデル理論の系譜における最初の顕著な成果はレオポールト・レーヴェンハイム(英語版)により1915年に発表された下方レーヴェンハイム-スコーレムの定理の特別な事例である。
コンパクト性定理は、トアルフ・スコーレムによる仕事において萌芽が見られるが[1]、ゲーデルの完全性定理の証明中の補題として1930年に初めて発表された。
レーヴェンハイム-スコーレムの定理およびコンパクト性定理は1936年および1941年にモルツェフ(英語版)によって一般的な形で形式化された。
省2
223(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/12/01(日)11:18 ID:id6ENHqe(5/31) AAS
>>221
>例えば、ゲーデルがコーエンにより開発された強制法を用いて行った構成可能集合に対する仕事によって、(哲学的に興味深い)選択公理の独立性(英語版)および集合論の他の公理からの連続体仮説を証明することができる。
ここ誤訳やね
原文は下記
”for example in Kurt Godel's work on the constructible universe, which, along with the method of forcing developed by Paul Cohen can be shown to prove the (again philosophically interesting) independence of the axiom of choice and the continuum hypothesis from the other axioms of set theory.”
<上記のGoogle和訳に手を入れたもの>
例えば、クルト・ゲーデルが研究した構成可能な宇宙を使って、ポール・コーエンによって開発された強制の方法とともに、選択公理及び連続体仮説が、集合論の他の公理のからの、(哲学的に興味深い)独立性を証明することができる。
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s