[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 http://rio2016.5ch.net/test/read.cgi/math/1573769803/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
337: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/07(土) 19:39:38.79 ID:H2e5WMAT >>336 つづき Completion of the proof The deduction of the Riemann hypothesis from this estimate is mostly a fairly straightforward use of standard techniques and is done as follows. Deligne's second proof Deligne (1980) found and proved a generalization of the Weil conjectures, bounding the weights of the pushforward of a sheaf. In practice it is this generalization rather than the original Weil conjectures that is mostly used in applications, such as the hard Lefschetz theorem. Much of the second proof is a rearrangement of the ideas of his first proof. The main extra idea needed is an argument closely related to the theorem of Jacques Hadamard and Charles Jean de la Vallee Poussin, used by Deligne to show that various L-series do not have zeros with real part 1. Inspired by the work of Witten (1982) on Morse theory, Laumon (1987) found another proof, using Deligne's l-adic Fourier transform, which allowed him to simplify Deligne's proof by avoiding the use of the method of Hadamard and de la Vallee Poussin. His proof generalizes the classical calculation of the absolute value of Gauss sums using the fact that the norm of a Fourier transform has a simple relation to the norm of the original function. Kiehl & Weissauer (2001) used Laumon's proof as the basis for their exposition of Deligne's theorem. Katz (2001) gave a further simplification of Laumon's proof, using monodromy in the spirit of Deligne's first proof. Kedlaya (2006) gave another proof using the Fourier transform, replacing etale cohomology with rigid cohomology. つづく http://rio2016.5ch.net/test/read.cgi/math/1573769803/337
338: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/12/07(土) 19:39:58.19 ID:H2e5WMAT >>337 つづき https://en.wikipedia.org/wiki/Lefschetz_pencil In mathematics, a Lefschetz pencil is a construction in algebraic geometry considered by Solomon Lefschetz, used to analyse the algebraic topology of an algebraic variety V. It has been shown that Lefschetz pencils exist in characteristic zero. They apply in ways similar to, but more complicated than, Morse functions on smooth manifolds. It has also been shown that Lefschetz pencils exist in characteristic p for the etale topology. Simon Donaldson has found a role for Lefschetz pencils in symplectic topology, leading to more recent research interest in them. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1573769803/338
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.046s