[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 http://rio2016.5ch.net/test/read.cgi/math/1573769803/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
178: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/26(火) 23:06:50.39 ID:oYs7jyeH >>124 >楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論 "アラケロフ理論(英語版)(Arakelov theory)"下記ですな 下記では、Faltings、Serge Lang、Mordell conjecture、Deligne、arithmetic Hodge index などなど、重要キーワード満載ですな (参考) https://en.wikipedia.org/wiki/Arakelov_theory Arakelov theory (抜粋) In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions. Contents 1 Background 2 Results 3 Arithmetic Chow groups 4 The arithmetic Riemann?Roch theorem Results Arakelov (1974, 1975) defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields, in the case of number fields. Gerd Faltings (1984) extended Arakelov's work by establishing results such as a Riemann-Roch theorem, a Noether formula, a Hodge index theorem and the nonnegativity of the self-intersection of the dualizing sheaf in this context. つづく http://rio2016.5ch.net/test/read.cgi/math/1573769803/178
179: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/26(火) 23:07:42.99 ID:oYs7jyeH >>178 つづき Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture. Pierre Deligne (1987) developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov. Arakelov's theory was generalized by Henri Gillet and Christophe Soule to higher dimensions. That is, Gillet and Soule defined an intersection pairing on an arithmetic variety. One of the main results of Gillet and Soule is the arithmetic Riemann?Roch theorem of Gillet & Soule (1992), an extension of the Grothendieck?Riemann?Roch theorem to arithmetic varieties. For this one defines arithmetic Chow groups CHp(X) of an arithmetic variety X, and defines Chern classes for Hermitian vector bundles over X taking values in the arithmetic Chow groups. Arakelov's intersection theory for arithmetic surfaces was developed further by Jean-Benoit Bost (1999). The theory of Bost is based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space {\displaystyle L_{1}^{2}}{\displaystyle L_{1}^{2}}. In this context Bost obtains an arithmetic Hodge index theorem and uses this to obtain Lefschetz theorems for arithmetic surfaces. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1573769803/179
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s